
Java Modeling Language (JML)
Reference Manual

2nd edition

David R. Cok, Gary T. Leavens, and Mattias Ulbrich

DRAFT July 1, 2022

This draft is very much a work in progress with many points under
discussion. The document is expected to be completed during 2022.

The most recent version of this document is available at
https://www.openjml.org/documentation/JML_Reference_Manual.pdfhttps://www.openjml.org/documentation/JML_Reference_Manual.pdf.

Copyright (c) 2010-2022

https://www.openjml.org/documentation/JML_Reference_Manual.pdf

Preface

This document defines the Java Modeling Language (JML), a language in which one
can write formal behavioral specifications for Java programs. JML was first a vehi-
cle for discussing theoretical and soundness issues in specification and verification of
object-oriented software. It then also became a formal specification language used in
education about verification, since Java was a commonly taught language in under-
graduate curricula; it is also frequently a basis for master’s theses and Ph.D. disser-
tations. Finally, JML is now being used to help verify, or at least increase confidence
in, critical industrial software.

With this broadening of the scope of JML, the JML community, and in particular the
participants in the more-or-less annual JML workshops, considered that the long-
standing and evolving Draft JML Reference manual [4646] should be rewritten, made
more precise, and made to represent the current state of JML used in tools. In the
process, many outstanding semantic and syntactic issues have been either resolved
or clarified. This document, a 2nd edition of the JML Reference Manual, is the re-
sult of that collaborative effort. Accordingly this document is a completely revised,
rewritten and expanded reference manual for JML, though it borrows much text from
the original document.

The document does not do some other things in which the reader may be inter-
ested:

• This document does not describe tools that implement JML or how to use those
tools. Some such tools are

– OpenJML — www.openjml.orgwww.openjml.org — with its user guide:
www.openjml.org/documentation/OpenJMLUserGuide.pdfwww.openjml.org/documentation/OpenJMLUserGuide.pdf,
and releases: https:github.com/OpenJML/OpenJML/releaseshttps:github.com/OpenJML/OpenJML/releases

– the KeY tool — https://www.key-project.org/https://www.key-project.org/ — including a
book about KeY: https://www.key-project.org/thebook2/https://www.key-project.org/thebook2/

• This document is not a tutorial about writing specifications in JML. For such a
tutorial, see https://www.openjml.org/tutorialhttps://www.openjml.org/tutorial.

You may also be interested in the JML project web site at
http://www.jmlspecs.orghttp://www.jmlspecs.org

i

www.openjml.org
www.openjml.org/documentation/OpenJMLUserGuide.pdf
https:github.com/OpenJML/OpenJML/releases
https://www.key-project.org/
https://www.key-project.org/thebook2/
https://www.openjml.org/tutorial
http://www.jmlspecs.org

ii

and the GitHub project for this reference manual,
https://github.com/JavaModelingLanguage/RefManhttps://github.com/JavaModelingLanguage/RefMan,

whose Issues log includes ongoing discussion of JML.

https://github.com/JavaModelingLanguage/RefMan

Contents

1 Introduction 22
1.1 Behavioral Interface Specifications 22
1.2 A First Example . 33
1.3 What is JML Good For? . 66
1.4 Purpose of this document . 88
1.5 Previous JML Reference Manual . 99
1.6 Historical Precedents and Antecedents 99
1.7 Acknowledgments . 1010

2 Structure of this Manual 1212
2.1 Organization . 1212
2.2 Typographical conventions . 1212
2.3 Grammar . 1313

3 JML concepts 1414
3.1 JML and Java compilation units . 1515
3.2 Program state and memory locations 1515
3.3 Specification inheritance . 1616
3.4 JML modifiers and Java annotations 1717

3.4.1 Modifiers . 1717
3.4.2 Type modifiers . 1717

3.5 Possibly null and non-null type annotations 1818
3.5.1 Syntax . 1818
3.5.2 Defaults . 1919
3.5.3 Java and JML language features with type annotations 1919
3.5.4 Generic types and type annotations 2222
3.5.5 Interplay with other non-null annotations 2222

3.6 Visibility . 2323
3.7 Model and Ghost . 2323
3.8 Static and Instance . 2323
3.9 Determinism of method calls . 2323
3.10 Observable purity . 2626
3.11 Location sets and Dynamic Frames 2626

iii

CONTENTS iv

3.12 Arithmetic modes . 2626
3.13 Race condition detection . 2626
3.14 Redundant specifications . 2727
3.15 Naming of JML constructs . 2727
3.16 Specification inference . 2727
3.17 org.jmlspecs.lang package . 2828
3.18 Evaluation and well-formedness of JML expressions 2828
3.19 Core JML . 2929

4 JML Syntax 3636
4.1 Textual form of JML specifications . 3636

4.1.1 Java lexical structure . 3636
4.1.2 JML annotations within Java source 3737
4.1.3 JML annotations . 3838
4.1.4 Unconditional JML annotations 3939
4.1.5 Conditional JML annotation comments 3939
4.1.6 Default keys . 4040
4.1.7 Tokenizing JML annotations 4040
4.1.8 Embedded comments in JML annotations 4141
4.1.9 Compound JML annotation token sequences 4242

4.2 Locations of JML annotations . 4343
4.3 JML identifiers and keywords vs. Java reserved words 4444
4.4 JML Lexical Grammar . 4646
4.5 Definitions of common grammar symbols 4747

5 JML Types 4949
5.1 Java reference types . 5050

5.1.1 Java enums . 5151
5.1.2 Java records . 5252
5.1.3 Java Streams . 5252

5.2 boolean type . 5252
5.3 Java integer and character types . 5353
5.4 \bigint . 5353
5.5 Java double and float types . 5454
5.6 \real . 5555
5.7 \TYPE . 5555
5.8 \locset . 5656
5.9 Mathematical sets: \set<T> . 5959
5.10 Mathematical sequences: \seq<T> 6060
5.11 String and \string . 6262
5.12 Mathematical maps: \map<T,U> . 6363

6 JML Specifications for Packages and Compilation Units 6565
6.1 Model import statements . 6565
6.2 Default imports . 6666
6.3 Issues with model import statements 6666

CONTENTS v

6.4 Model classes and interfaces . 6767

7 Specifications for Java types in JML 6868
7.1 Modifiers for type declarations . 6868

7.1.1 non_null_by_default, nullable_by_default,
@NonNullByDefault, @NullableByDefault 6969

7.1.2 pure and @Pure . 6969
7.1.3 @Options . 6969

7.2 invariant clause . 6969
7.3 constraint clause . 7070
7.4 initially clause . 7070
7.5 ghost fields . 7070
7.6 model fields . 7171
7.7 represents clause . 7171
7.8 model methods and model classes . 7272
7.9 static_initializer . 7272

7.9.1 Simple static initialization . 7272
7.9.2 Static initializers and static invariants 7373
7.9.3 Default static initialization 7373
7.9.4 Multi-class initialization . 7474

7.10 (instance) initializer . 7575
7.11 axiom . 7676
7.12 readable if clause and writable if clause 7676
7.13 monitors_for clause . 7777

8 JML Method specifications 7878
8.1 Structure of JML method specifications 7878

8.1.1 Behaviors . 8080
8.1.2 Nested specification clauses 8080
8.1.3 Ordering of clauses . 8181
8.1.4 Specification inheritance and the code modifier 8181
8.1.5 Visibility . 8282
8.1.6 Grammar of method specifications 8383

8.2 Method specifications as Annotations 8383
8.3 Modifiers for methods . 8484
8.4 Common JML method specification clauses 8484

8.4.1 requires clause . 8484
8.4.2 ensures clause . 8484
8.4.3 assignable clause . 8585
8.4.4 signals clause . 8585
8.4.5 signals_only clause . 8585

8.5 Advanced JML method specification clauses 8686
8.5.1 accessible clause . 8686
8.5.2 diverges clause . 8686
8.5.3 measured_by clause . 8787
8.5.4 when clause . 8787

CONTENTS vi

8.5.5 old clause . 8888
8.5.6 duration clause . 8888
8.5.7 working_space clause . 8888
8.5.8 callable clause . 8989
8.5.9 captures clause . 8989

8.6 Model Programs (model_program clause) 9090
8.6.1 Structure and purpose of model programs 9090
8.6.2 extract clause . 9090
8.6.3 choose clause . 9090
8.6.4 choose_if clause . 9090
8.6.5 or clause . 9090
8.6.6 returns clause . 9090
8.6.7 continues clause . 9090
8.6.8 breaks clause . 9090

8.7 Modifiers for method specifications 9090
8.7.1 pure and @Pure . 9090
8.7.2 non_null, nullable, @NonNull, and @Nullable 9090
8.7.3 model and @Model . 9090
8.7.4 spec_public, spec_protected,

@SpecPublic, and @SpecProtected 9191
8.7.5 helper and @Helper . 9191
8.7.6 function and @Function 9191
8.7.7 query, secret, @Query, and @Secret 9191
8.7.8 code_java_math, spec_java_math,

code_bigint_math, spec_bigint_math,
code_safe_math, spec_safe_math,
@CodeJavaMath, @CodeSafeMath, @CodeBigintMath,
@SpecJavaMath, @SpecSafeMath, @SpecBigintMath 9191

8.7.9 skip_esc, skip_rac, @SkipEsc, and SkipRac 9191
8.7.10 @Options . 9191
8.7.11 extract and @Extract . 9292

8.8 TODO Somewhere . 9292

9 Field Specifications 9393
9.1 Field and Variable Modifiers . 9393

9.1.1 non_null and nullable (@NonNull, @Nullable) 9393
9.1.2 spec_public and spec_protected (@SpecPublic, @SpecProtected) 9393
9.1.3 ghost and @Ghost . 9494
9.1.4 model and @Model . 9494
9.1.5 uninitialized and @Uninitialized 9494
9.1.6 instance and @Instance 9595
9.1.7 monitored and @Monitored 9595
9.1.8 query, secret and @Query, @Secret 9595
9.1.9 peer, rep, readonly (@Peer, @Rep, @Readonly) 9595

9.2 Ghost fields . 9595
9.3 Model fields . 9595

CONTENTS vii

9.4 Datagroups: in and maps clauses . 9696
9.5 maps clause . 9696

10 Default specifications and specification inference 9797
10.1 Class specifications . 9797

10.1.1 Static initialization . 9797
10.1.2 Instance initialization . 9797

10.2 Field specifications . 9797
10.3 Non-overridden methods . 9898
10.4 Overriding methods . 9999
10.5 Library methods . 9999
10.6 Object() . 100100
10.7 Constructors . 100100
10.8 Default constructors . 101101

10.8.1 Specification in .jml file . 101101
10.8.2 Specification in .java file . 101101
10.8.3 Default specification . 102102

10.9 Enums . 102102
10.10 Records . 102102

10.10.1 Lambda functions . 104104
10.10.2 Loops . 104104

11 JML Statements 105105
11.1 assert statement and Java assert statement 106106
11.2 assume statement . 106106
11.3 Local ghost variable declarations . 107107
11.4 Local model class declarations . 107107
11.5 Ghost statement label . 108108
11.6 Built-in state labels . 109109
11.7 unreachable statement . 109109
11.8 set statement . 110110
11.9 Loop specifications . 110110

11.9.1 Loop invariants . 111111
11.9.2 Loop variants . 112112
11.9.3 Loop frame conditions . 112112
11.9.4 Inferring loop specifications 112112

11.10 Statement (block) specification . 113113
11.11 begin-end statement groups . 114114

12 JML Expressions 115115
12.1 Syntax . 116116
12.2 Purity (no side-effects) . 116116
12.3 Java operations used in JML . 116116
12.4 Precedence of infix operations . 116116
12.5 Well-defined expressions . 116116
12.6 Chaining of comparison operators . 119119

CONTENTS viii

12.7 org.jmlspecs.lang.JML . 120120
12.8 Implies operator: ==> . 120120
12.9 Equivalence and inequivalence: <==> <=!=> 120120
12.10 JML subtype: <: . 121121
12.11 Lock ordering: <# <#= . 121121
12.12 \result . 122122
12.13 \exception . 122122
12.14 \count (\index) . 123123
12.15 \old, \pre, and \past . 123123

12.15.1 \old . 124124
12.15.2 \pre . 125125
12.15.3 \past . 125125

12.16 \fresh . 125125
12.17Quantified expressions . 126126

12.17.1 \forall, \exists . 127127
12.17.2 \choose . 127127
12.17.3 \one_of, \sum, \product, \max, \min 128128

12.18 \nonnullelements . 128128
12.19 informal expression: (*...*) and

JML.informal() . 129129
12.20 \type . 130130
12.21 \typeof . 130130
12.22 \elemtype . 131131
12.23 \is_initialized . 131131
12.24 \invariant_for . 132132
12.25 \static_invariant_for . 132132
12.26 \not_modified . 133133
12.27 \not_assigned . 133133
12.28 \only_assigned, \only_accessed,

\only_captured . 134134
12.29 \only_called . 134134
12.30 \lockset and \max . 135135
12.31 \reach . 135135
12.32 Set comprehension . 136136
12.33 \duration . 136136
12.34 \working_space . 136136
12.35 \space . 137137
12.36 Store-ref expressions . 137137

13 Arithmetic modes 140140
13.1 Integer arithmetic . 140140

13.1.1 Integer arithmetic modes . 140140
13.1.2 Semantics of Java math mode 142142
13.1.3 Semantics of Safe math mode 143143
13.1.4 Semantics of Bigint math mode 143143
13.1.5 Arithmetic modes and Java code 143143

CONTENTS ix

13.2 Real arithmetic modes . 144144
13.2.1 fp_strict mode . 144144
13.2.2 fp_real mode . 144144

14 Specification and verification of lambda functions 146146

15 Universe types 147147

16 Model Programs 148148

17 Specification .jml files 149149
17.1 Locating .jml files . 149149
17.2 Rules applying to declarations in .jml files 150150
17.3 Combining Java and JML files . 152152
17.4 Specifications in method bodies . 153153
17.5 Obsolete syntax . 153153

18 Interaction with other tools 154154
18.1 Interaction with the Checker framework 154154

A Summary of Modifiers 155155

B Deprecated and Replaced Syntax 159159
B.1 Deprecated Syntax . 159159

B.1.1 Deprecated Annotation Markers 159159
B.1.2 Deprecated Represents Clause Syntax 160160
B.1.3 Deprecated monitors_for Clause Syntax 160160
B.1.4 Deprecated File Name Suffixes 160160
B.1.5 Deprecated weakly modifier 160160
B.1.6 Deprecated refine Prefix 160160
B.1.7 Deprecated reverse-implication (<==) token 161161
B.1.8 Deprecated \not_specified token 161161
B.1.9 Deprecated nowarn line annotation and \nowarn_op and

\warn_op functions . 161161
B.1.10 Deprecated hence_by . 161161
B.1.11 Deprecated forall method specification clause 161161
B.1.12 Deprecated constructor, method and field keywords 161161
B.1.13 Deprecated \lblpos and \lblneg 161161
B.1.14 Deprecated Java annotations for specifications 162162

B.2 Replaced Syntax . 162162

C Grammar Summary 163163

D Type Checking Summary 164164

E Verification Logic Summary 165165

CONTENTS x

F Differences in JML among tools 166166

G TODO 167167

H Statement translations 168168
H.1 While loop . 168168

I Java expression translations 169169
I.1 Implicit or explicit arithmetic conversions 169169
I.2 Arithmetic expressions . 169169
I.3 Bit-shift expressions . 170170
I.4 Relational expressions . 170170
I.5 Logical expressions . 170170

CONTENTS 1

General notes on things not to forget:

- enum types

- default specs for binary classes

- datagroups, JML.* utility functions, @Requires-style annotations.
arithmetic modes, universe types

- visibility in JML

– Sorted First-order-logic

– individual subexpressions; optional expression form; optimization; usefulness for
tracing

– RAC vs. ESC

– nomenclature

– lambda expressions

– other Java 6+ features

– Specification of subtypes - cf Clyde Ruby’s dissertation and papers

– immutable types

Chapter 1

Introduction

JML is a behavioral interface specification language (BISL) that builds on the Larch
approach [2727] [2828] and Eiffel [5454] [5555] (and other languages such as VDM [3737] and
APP [6565]). In this style of specification, which might be called model-oriented [7171],
one specifies both the interface of a method or abstract data type and its behavior
[4040]. In particular JML builds on the work done by Leavens and others in Larch/C++
[4444] [4141] [4242]. (Indeed, large parts of this manual are adapted wholesale from the
Larch/C++ reference manual [4242].) Much of JML’s design was heavily influenced by
the work of Leino and his collaborators [4747] [4848] [5050], then subsequently by Cok’s
work on ESC/Java2 [2222] and OpenJML [1919], the work on the KeY tool [22], and by
work on other specification languages such as Spec# [88], ACSL [1010], SPARK [77], and
Dafny [4949]. JML continues to be influenced by ongoing work in formal specification
and verification. A collection of papers relating directly to JML and its design is found
at http://www.jmlspecs.org/papers.shtmlhttp://www.jmlspecs.org/papers.shtml.

1.1 Behavioral Interface Specifications
The interface of a method or type (i.e., a Java class or interface) is the information
needed to use it from other parts of a program. In the case of JML, this is the Java
syntax and type information needed to call a method or use a field or type. For a
method, the interface includes such things as the name of the method, its modifiers
(including its visibility and whether it is final) its number of arguments, its return
type, what (checked) exceptions it may throw, and so on. For a field, the interface
includes its name, type and modifiers. For a type, the interface includes its name,
its modifiers, its package, whether it is a class or interface, its supertypes, and the
interfaces of the fields and methods it declares and inherits. JML specifies all such
interface information using Java’s syntax.

A behavior of a method describes the possible state transformations that it performs
when invoked. A behavior of a method is specified by describing

2

http://www.jmlspecs.org/papers.shtml

CHAPTER 1. INTRODUCTION 3

• a set of states for which calling the method is permitted, these are called the
method’s pre-states,

• the set of memory locations that the method is allowed to assign to (and hence
may change), and

• the relation between each permitted pre-state and the post-state(s) that the
method is supposed to achieve. These post-states may result from the method
either (a) returning normally, (b) throwing an exception, or (c) not returning to
the caller.

The states for which calling the method is defined are formally described by another
logical predicate called the method’s precondition. The set of locations the method
is allowed to assign to is described by the method’s frame condition [1212]. The post-
states that are allowed to result from the method returning normally are specified
by its normal postcondition. Similarly the relationships between the specified pre-
states and the states that may result from throwing an exception are described by
the method’s exceptional postcondition. The pre-states for which the method need
not return to the caller are described by the method’s divergence condition. A method
specification is thus a generalization of a Hoare triple [3131], as adapted by Meyer to
the design-by-contract style of specification [5353].

The behavior of an abstract data type (ADT) is specified as a combination of the the
behavior of its methods (specified as described above) and by abstractly describing
the states of its objects (and any static fields it may have). The abstract state of an
object can be specified either by using JML’s model and ghost fields [1818], which are
specification-only fields, or by using a shortcut (spec_public or spec_protected)
that specifies that some fields used in the implementation are considered to have
public or protected visibility for specification purposes. These declarations allow the
specifier using JML tomodel an instance as a collection of abstract instance variables,
in much the same way as other specification languages, such as Z [3030] [6868] or Fresco
[6969].

1.2 A First Example
As a first example, consider the JML specification of a simple Java class Counter
shown in Fig. 1.1 on the following page1.1 on the following page. (An explanation of the notation follows.)

The interface of this class consists of lines 4, 7, 15, 24, and 30.

Line 4 specifies the class name, Counter and the fact that the class is public. Line 7
declares the private field count and also that it is spec_public, which means that
count can be treated as public for specification purposes.

Lines 15, 24, and 30 specify interfaces of the constructor (line 15) and two methods
(lines 24 and 30). The methods inc and getCount are specified to be public and to
have return types void and long, respectively.

The behavior of this class is specified in the JML annotations found in the special

CHAPTER 1. INTRODUCTION 4

1 package org.jmlspecs.samples.jmlrefman;
2

3 /** A simple Counter. **/
4 public class Counter {
5

6 /** The counter’s value. **/
7 /*@ spec_public @*/ private long count = 0;
8

9 //@ public invariant 0 <= count && count <= Long.MAX_VALUE;
10

11 /** Initialize this counter’s value. **/
12 /*@ requires true;
13 @ ensures count == 0;
14 @*/
15 public Counter() {
16 count = 0;
17 }
18

19 /** Increment this counter’s value. */
20 /*@ requires count < Long.MAX_VALUE;
21 @ assignable count;
22 @ ensures count == \old(count + 1);
23 @*/
24 public void inc() {
25 count++;
26 }
27

28 /** Return this counter’s value. */
29 //@ ensures \result == count;
30 public /*@ pure @*/ long getCount() {
31 return count;
32 }
33 }

Figure 1.1: Counter.java, with Java code and a JML specification. The small line num-
bers to the left are only for the purpose of referring to lines in the text and are not
part of the file.

CHAPTER 1. INTRODUCTION 5

comments that have an at-sign (@) as their first character following the usual com-
ment beginning. Such lines look like comments to Java, but are interpreted by JML
and its tools. For example, the JML annotation on line 7 starts with an annotation
comment marker of the form /*@, and this annotation continues until */ is seen. In
such JML annotations, one can also end with an at-sign before the */, as in @*/. In
such JML annotations, as in lines 12–14, at-signs at the beginnings of lines are also
ignored by JML. The other form of such annotations can be seen on line 9, which is a
JML annotation that starts with //@ and continues to the end of that line. Note that
there can be no space between the start of comment marker, either // or /*, and the
first at-sign; thus // @ starts a comment, not a JML annotation. (See §44 for more
details about JML annotations.)

The first annotation, on line 7 of Fig. 1.1 on the previous page1.1 on the previous page specifies that the count
field is spec_public, which means that it can be referred to in any (public) speci-
fication that has access to the class Counter (cf. §8.1.58.1.5). That is, as far as the JML
specifications are concerned (but not for Java code), count can be used as if it were
declared as public.

The count field is used on line 9 in the public invariant of the class. This invariant
says that at the beginning and end of each public method, and at the end of the
constructor, the assertion

0 <= count && count <= Long.MAX_VALUE

will be true. This can be regarded as an assumption at the beginning of each method
and as an obligation to make true at the end of each method that might change the
value of the field count. (See §7.27.2 for more about object and class invariants.)

In Fig. 1.1 on the preceding page1.1 on the preceding page, the specification of each method and constructor
precedes its interface declaration. This follows the usual convention of Java tools,
such as javadoc, which put such descriptive information in front of the method. (See
§88 for more details about method specifications.)

The specification of the constructor Counter is given on lines 12–13. The construc-
tor’s precondition is the predicate following the keyword requires (i.e., true), and
it says that the constructor can be called in any state. Such trivial preconditions
(and requires clauses) can be omitted. The constructor’s postcondition follows the
keyword ensures. It says that when the constructor returns, the value in the field
count is 0. Note that the value 0 satisfies the specified invariant, as the specification
dictates.

The specification of the method inc is given on lines 20–24. Its precondition is that
count not be the largest value for a long, so that incrementing it does not cause
its value to become negative, as that would violate the invariant. Its postcondition
says that the final value of count is one more than the value of count in the state
in which the method was invoked.

Note that in the postcondition, JML uses a keyword (\old) that starts with a back-
slash (\bs); this lexical convention is intended to avoid interfering with identifiers in

CHAPTER 1. INTRODUCTION 6

the user’s program. Another example of this convention is the keyword \result on
line 29.

The frame condition expressed in the assignable clause on line 21 says that themethod
may assign to count, but also prohibits it from assigning to any locations (i.e. fields
of objects) that are visible outside the method and which existed before the method
started execution. (See §88 for more details about method framing.)

The postcondition of the getCount method on line 29 says that the result returned
by the method (\result) must be equal to the value of the field count.

The method getCount is specified using the JML modifier pure. This modifier says
that the method has no effects, so its assignable clause is implicitly

assignable \nothing;

and allows the method to be used in specification expressions, if desired.

1.3 What is JML Good For?
JML is a formal specification language tailored to Java. Its basic use is thus the for-
mal specification of the behavior of Java program classes and interfaces. As it is a
behavioral interface specification language, JML specifies how to use such classes
and interfaces from within a Java program; hence JML is not primarily designed for
specifying the behavior of an entire program. So the question “what is JML good
for?” really boils down to the following question: what good is formal specification
for Java program classes and interfaces?

The two main benefits in using JML are:

• the precise, unambiguous description of the behavior of Java classes and inter-
faces, and documentation of Java code,

• the possibility of tool support [1313].

Although we would like tools that would help with reasoning about the concurrent
behavior of Java programs, the current version of JML focuses on the sequential be-
havior of Java code. While there has been work on extending JML to support concur-
rency [6464], the current version of JML does not have features that specify how Java
threads interact with each other. JML does not, for example, allow the specification
of elaborate temporal properties, such as coordinated access to shared variables or
the absence of deadlock. Indeed, we assume, in the rest of this manual, that there is
only one thread of execution in a Java program annotated with JML, and we focus on
how the program manipulates object states. To summarize, JML is currently limited
to sequential specification; we say that JML specifies the sequential behavior of Java
classes and interfaces.

In terms of detailed design documentation, a JML specification can be a completely
formal contract about an interface and its sequential behavior. Because it is an in-
terface specification, one can record all the Java details about the interface, such as

CHAPTER 1. INTRODUCTION 7

whether a method is final, protected, etc.; if one used a specification language
such as OCL, VDM-SL, or Z, which is not tailored to Java, then one could not record
such details of the interface, which could cause problems in code integration. For ex-
ample, in JML one can specify the precise conditions under which certain exceptions
may be thrown, something which is difficult in a specification language that is not
tailored to Java and that does not model the notion of an exception.

When should JML documentation be written? That is up to you, the user. One goal of
JML is to make the notation indifferent to the precise design or programmingmethod
used. One can use JML either before coding or as documentation of finished code.
While we recommend doing some design, and JML specification of the design, before
coding, JML can also be used for documentation after the code is written.

Reasons for formal documentation of interfaces and their behavior, using JML, in-
clude the following.

• One can ship the object code for a class library to customers, sending the JML
specifications but not the source code. Customers would then have documen-
tation that is precise, unambiguous, but not overly specific. Customers would
not have the code, protecting proprietary rights. In addition, customers would
not rely on details of the implementation of the library that they might other-
wise glean from the code, easing the process of improving the code in future
releases.

• One can use a formal specification to analyze certain properties of a design
carefully or formally (see [2929] and Chapter 7 of [2727]). In general, the act of
formally specifying a program module has salutary effects on the quality of
the design.

• One can use the JML specification as an aid to careful reasoning about the
correctness of code, or even for formal verification [3333, 3535, 6767].

• JML specifications can be used by several tools that can help debug and im-
prove the code [1313].

There is one additional benefit from using JML. It is that JML allows one to record not
just public interfaces and behavior, but also some detailed design decisions. That is,
in JML, one can specify not just the public interface of a Java class, but also behavior
of a class’s protected and private interfaces. Formally documenting a base class’s
protected interface and its “subclassing contract” allows programmers to implement
derived classes of such a base class without looking at its code [6666, 6767].

Recording the private interface of a class may be helpful in program development or
maintenance. Usually one would expect that the public interface of a class would be
specified, and then separate, more refined specifications would be given for use by
derived classes and for detailed implementation

The reader may also wish to consult the “Preliminary Design of JML” [4545] for a dis-
cussion of the goals that are behind JML’s design. Apart from the improved precision

CHAPTER 1. INTRODUCTION 8

in the specifications and documentation of code, the main advantage of using a for-
mal specification language, as opposed to informal natural language, is the ease and
accuracy of tool support. One specific goal that has emerged over time is that JML
should be able to unify several different tool-building efforts in the area of formal
methods.

The most basic tool support for JML — simply parsing and type-checking specifica-
tions — is already useful. Whereas informal comments in code are typically not kept
up to date as the code is changed, the simple act of running the typechecker will
catch any JML assertions referring to parameter or field names that no longer exist,
and other typos. Enforcing the visibility rules can also provide useful feedback; for
example, a precondition of a public method which refers to a private field of an
object is suspect.

Of course, there are more exciting forms of tool support than just parsing and type-
checking. In particular JML is designed to support static analysis and formal verifi-
cation, as in OpenJML’s extended static checker (ESC) [2121, 2323, 1919, 2020], or the KeY tool
[1111].11 Other tools for JML [1313] include Daikon [2525], which can infer some JML spec-
ifications from execution traces during testing, and the runtime assertion checker
(RAC) of OpenJML [2020] the RAC found in AspectJML [6161]22 and recording of dynami-
cally obtained invariants (as in Daikon), and documentation (as in JML’s jmldoc tool).
The paper by Burdy et al. [1313] is a survey of tools for JML. The utility of these tools
is the ultimate answer to the question of what JML is good for.

1.4 Purpose of this document
The purpose of this document is to define a standard for the syntax and formal
semantics of JML as a language. The document also distinguishes core aspects of
JML, which have proved to be the most used and most important specification ele-
ments.

This reference manual thus seeks to define a standard for JML that will be a common
basis for tools and for discussion but does not mean to inhibit experimentation and
proposals for change. Therefore we present a framework in which new tools and
approaches can be defined such that a deviation of the semantics from this standard
can be clearly stated.

To make JML a versatile specification vehicle, the meaning of its annotations must
be unambiguously clear. And if tools interpret a few language constructs differently,
these differences must be easily and concise stated.

1There have been other formal verification tools for JML, including the LOOP tool [3333, 3636].
2AspectJML is a further evolution of a previous RAC called ajmlc [6363, 6262]. There was also a RAC tool

from Iowa State, called jmlc [1515, 1616, 1717], that is no longer maintained.

CHAPTER 1. INTRODUCTION 9

1.5 Previous JML Reference Manual
This referencemanual builds on the previous draft JML ReferenceManual [4646], which
evolved over many years and had many contributors. This current edition of the ref-
erence manual is largely a rewrite of the previous draft. Some sections, particularly
introductory and overviewmaterial, are taken nearly verbatim from the previous JML
draft reference manual [4646]. However, the current version also incorporates the expe-
rience of building tools for JML by the OpenJML and KeY developers, many decisions
about new features or deprecated features made at JML workshops, and discussions
about JML on the JML mailing lists and, more actively, on the JML Reference Manual
GitHub site. This edition of the reference manual includes features that are proposed
enhancements or clarifications of the consensus language definition. It also includes
rationale for non-obvious language features and discussion of points that are under
current debate or require extended explanation.

JML changes with changes to Java itself. The version of JML presented here corre-
sponds to Java 17.

1.6 Historical Precedents and Antecedents
JML combines ideas from Eiffel [5353] [5454] [5555] with ideas from model-based specifica-
tion languages such as VDM [3838] and the Larch family [2727] [4343] [7070] [7171]. It also adds
some ideas from the refinement calculus [44] [55] [66] [5757] [5656]. In this section we de-
scribe the advantages and disadvantages of these approaches. Readers not interested
in these historical precedents may skip this section.

Formal, model-based languages such as those typified by the Larch family build on
ideas found originally in Hoare’s work. Hoare used pre- and postconditions to de-
scribe the semantics of computer programs in his famous article [3131]. Later Hoare
adapted these axiomatic techniques to the specification and correctness proofs of ab-
stract data types (ADTs) [3232]. To specify an ADT, Hoare described a mathematical set
of abstract values for the type, and then specified pre- and postconditions for each
of the operations of the type in terms of how the abstract values of objects were af-
fected. For example, one might specify a class IntHeap using abstract values of the
form empty and add(i,h), where i is an int and h is an IntHeap. These notations
form a mathematical vocabulary used in the rest of the specification.

There are two advantages to writing specifications with mathematically-defined ab-
stract values instead of directly using Java variables and data structures. The first is
that by using abstract values, the specification does not have to be changed when
the particular data structure used in the program is changed. This permits different
implementations of the same specification to use different data structures. Therefore
the specification forms a contract between the rest of the program and the imple-
mentation, which ensures that the rest of the program is also independent of the
particular data structures used [5252] [5555] [5353] [6060]. Second, it allows the specification
to be written even when there are no implementation data structures, e.g., for a Java
interface.

CHAPTER 1. INTRODUCTION 10

This idea of model-oriented specification has been followed in VDM [3838], VDM-SL
[2626] [5959], Z [3030] [6868], and the Larch family [2727]. In the Larch approach, the essential
elaboration of Hoare’s original idea is that the abstract values also come with a set of
operations. The operations on abstract values are used to precisely describe the set of
abstract values and to make it possible to abbreviate interface specifications (i.e., pre-
and postconditions for methods). In Z one builds abstract values using tuples, sets,
relations, functions, sequences, and bags; these all come with pre-defined operations
that can be used in assertions. In VDM one has a similar collection of mathematical
tools to describe abstract values, and another set of pre-defined operations. In the
Larch approach, there are some pre-defined kinds of abstract values (found in Gut-
tag and Horning’s LSL Handbook, Appendix A of [2727]), but these can be extended if
needed.

However, there is a problem with using mathematical notations for describing ab-
stract values and their operations. The problem is that such mathematical notations
are an extra burden on a programmer who is learning to use a specification language.
The solution to this problem is the essential insight that JML takes from the Eiffel
language [5353] [5454] [5555]. Eiffel is a programming language with built-in specification
constructs. It features pre- and postconditions, although it has no direct support for
frame axioms. Eiffel programmers can easily read predicatesin specifications, as these
are written in Eiffel’s own expression syntax. However, Eiffel does not provide sup-
port for specification-only variables, and it does not provide much explicit support for
describing abstract values. Because of this, it is difficult to write specifications that
are as mathematically complete in Eiffel as one can write in a language like VDM or
a Larch-style BISL.

JML attempts to combine the good features of these approaches. From Eiffel we have
taken the idea that assertions can be written in a language that is based on Java
expressions. We also adopt the “old” notation from Eiffel, which appears in JML
as \old, instead of the Larch-style annotation of names with state functions. To
make it easy to write more complete specifications, however, we use various seman-
tic ideas from model-based specification languages. In particular we use a variant
of abstract value specifications, where one describes the abstract value of an object
implicitly using several model fields. These specification-only fields allow one to im-
plicitly partition the abstract value of an object into smaller chunks, which helps in
stating frame axioms. More importantly, we hide the mathematical notation behind
a facade of Java classes. This makes it so the operations on abstract values appear in
familiar (although perhaps verbose) Java notation, and also insulates JML from the
details of the particular mathematical logic used to do reasoning.

1.7 Acknowledgments
This rewrite of the JML Reference Manual is largely the work of David R. Cok, Gary T.
Leavens, and Mattias Ulbrich, building on the previous Draft Reference Manual [4646]
and discussions by the JML community.

CHAPTER 1. INTRODUCTION 11

Contributions fromDavid Cok are supported in part by the National Science Founda-
tion: This material is based upon work supported by the National Science Foundation
under Grant No. ACI-1314674. David Cok has also been partially supported by in-
dustrial contracts from AWS and Goldman-Sachs.

The work of Leavens and his collaborators (in particular Clyde Ruby) was supported
in part by a grant from Rockwell International Corporation and by NSF grant CCR-
9503168. Work on JML by Leavens (and Ruby) was also supported in part by NSF
grant CCR-9803843. Work on JML by Leavens (with Yoonsik Cheon, Curtis Clifton,
Clyde Ruby, and others) has been supported in part by NSF grants CCR-0097907,
CCR-0113181, CCF-0428078, and CCF-0429567, CNS 08-08913, CNS 07-07874, CNS
07-07701, CNS 07-07885, CNS 07-08330, and CNS 07-09169. The work of Erik Poll
was partly supported by the Information Society Technologies (IST) program of the
European Union, as part of the VerifiCard project, IST-2000-26328.

Contributions ofMattias Ulbrich stem from his participation in the KeYproject. Other
members of that team, such as Alexander Weigl, also contributed comments, lan-
guage suggestions and critiques.

Any opinions, findings, and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation or any other funding organization.

Thanks to Bart Jacobs, Rustan Leino, PeterMüller, Arnd Poetzsch-Heffter, and Joachim
van denBerg, formany discussions about the semantics of JML specifications. Thanks
to Raymie Stata for spearheading an effort at Compaq SRC to unify JML and ESC/-
Java, and to Rustan and Raymie for many interesting ideas and discussions that have
profoundly influenced JML.

See the “Preliminary Design of JML” [4545] for more acknowledgments relating to the
earlier history, design, and implementation of JML.

Chapter 2

Structure of this Manual

2.1 Organization
This document presents the syntax, grammar, and semantics of the Java Modeling
Language (JML); all these aspects build on the corresponding aspects of Java. Like
Java and other programming languages, the source text is divided into syntactic to-
kens, (largely) independent of the grammar or semantics; the JML syntax is described
in §44. The grammar is described throughout the manual in the form described below
(§2.32.3), with common aspects of the grammar summarized in §4.54.5.

The semantics of JML is given informally, relying on the description of Java in the
Java Language Specification (JLS)Java Language Specification (JLS).

Chapter 3 describes some fundamental concepts for JML and specification languages
generally. Chapter 4 introduces JML syntax. The subsequent chapters describe the
kinds of JML annotations used for various Java program elements. The final chapters
include summary tables, descriptions of obsolete syntax, and the like.

2.2 Typographical conventions
The remaining chapters of this book follow some common typographical conven-
tions.

The document has internal clickable hyperlinks: from section references to sections,
from bibliography entries to the page containing the reference, and from uses of
grammar non-terminals to the definitions of those non-terminals.

This style of text is used for commentary on the JML language itself, such as out-
standing issues or now-obsolete practice.

12

https://docs.oracle.com/javase/specs/jls/se17/html/index.html

CHAPTER 2. STRUCTURE OF THIS MANUAL 13

Java and JML program fragments are shown either as listed code, with line numbers
for reference (the line numbers are not part of the code), as in

1 public class Example {
2 }

or as a boxed example

public class Example2 {
}

2.3 Grammar
The grammar of JML is intertwined with that of Java. The grammar is given in this
Reference Manual as extensions of the Java grammar, using conventional BNF-style
productions. The meta-symbols of the grammar are in slightly larger, normal-weight,
mono-spaced font. The productions of the grammar use the following syntax:

• non-terminals are written in italics and enclosed in angle brackets: <expression>

• terminals, including punctuation as terminals, are written in bold font: old () .

• parentheses express grouping: (...)

• an infix vertical bar expresses mutually-exclusive alternatives: ... |... |...

• repetitions of 0 or more and 1 or more and 0 or 1 (i.e., optional) elements use
post-fixed symbols: * + ?

• square brackets enclose an optional element: []

• a post-fixed ... indicates a comma-separated list of 0 or more elements:
<expression> ...
that is, it is, what would otherwise be written
[<expression> (, <expression>)*]

• 1-or-more comma-separated elements is written as
<expression> (, <expression>)*

• a production begins with: <non-terminal> ::=

• non-terminals beginning with java- as in <java-identifier><java-identifier> refer to a purely Java
non-terminal, as is defined in the JLS; a prefix of jml- is used to emphasize a
distinction from Java.

Uses of a non-terminal are clickable hyperlinks to their definitions.

Section §4.54.5 contains a list of definitions of common grammar non-terminals.

Chapter 3

JML concepts

This chapter describes some general design principles and concepts of the Java Mod-
eling Language that are used throughout this manual and discuss the overall way
that specifications are processed and used. Some of this discussion relies on syn-
tactic and grammatical information presented in later chapters. Also, some major
concepts are presented in chapters of their own.

JML specifications are declarative statements about the behavior and properties of
Java entities, namely, packages, classes, methods, and fields. Typically JML does not
make assertions about how a method or class is implemented, only about the net
behavior of the implementation. However, to aid in proving assertions about the
behavior ofmethods, JML does include statement and loop specifications (in the body
of the implementation).

JML is a versatile specification vehicle. It can be used to add lightweight specifications
(e.g., specifying ranges for integer values or when a field may hold null) to a program
but also to formulate more heavyweight concepts (such as abstracting a linked list
into a sequence of values).

JML annotations are not bound to a particular tool or approach, but can serve as
input to a variety of tools that have different purposes, such as runtime assertion
checking, test case generation, extended static checking, full deductive verification,
and documentation generation.

In deductive verification, specifications and corresponding proof obligations may be
considered at different levels of granularity. Deductive verification work using JML is
typically concerned with modular proofs at the level of Java methods. That is, a veri-
fication system will establish that each Java method of a program is consistent with
its own specifications, presuming the specifications of all methods and classes it uses
are correct. If this statement is true for all methods in the program, and all methods
terminate, then the system as a whole is consistent with its specifications. [33]

14

CHAPTER 3. JML CONCEPTS 15

3.1 JML and Java compilation units
A Java program is organized as a set of compilation units grouped into packages.
The Java language specification does not stipulate a particular means of storing the
Java program text that constitutes each compilation unit. However, the vast majority
of systems supporting Java programs store each compilation unit as a separate file
with a name that corresponds to the class or interface it contains; usually the files
constituting a package are placed in a directory named the same as the last element
of the package name, and these directories are organized into a hierarchy, with parent
directories named by earlier components of a package name.

The simplest way of specifying a Java program with JML is to include the text of
the JML specifications directly in the Java source text, as specially formatted com-
ments. This was shown in Fig. 1.1 on page 41.1 on page 4. By using specially formatted comments
to express JML, any existing Java tools will ignore the JML text.

However, in some cases the source Java files are not permitted to be modified or it
is preferable not to modify them; reasons for this include the Java source code not
being available or being proprietary. In these cases, the JML specifications must be
expressed separate from the Java source program text in a way that the specifica-
tions of packages, classes, methods, and fields can be associated with the correct
Java entity.

Therefore, JML tools permit specifications to be either stored (a) with the Java source
or (b) separately. For Java language systems in which Java source material is stored in
files, the JML specifications are either in the same .java file (case (a)) or in a separate
.jml file (case (b)). In case (b), the separate file has a .jml suffix and the same root
name as the corresponding Java source file (typically the name of the public class
or interface in the compilation unit), the same package designation, and is stored in
the file system’s directory hierarchy according to its package and class name, in the
same way as the Java compilation unit source files. For the rare case in which files are
not the basis of Java compilation units, the JML tools must implement a means, not
specified here, to recover JML text that is associated with Java source text to enable
case (b).

The rules about the format of the text in .jml files are presented in §1717.

3.2 Program state and memory locations
In imperative programming languages, such as Java, actions of a program during exe-
cution act on a program state. In actual operation, the state of a program is stored in a
computer’s memory, with each action reading and writing various hardware memory
locations. We can talk about the state of a program at each point of execution and
about the states before (the pre-state) and after (the post-state) an action or series of
actions. The state consists of a set of memory locations or, abstractly, just locations.
These locations are either heap locations or stack locations. The program state can
grow and shrink as the stack grows and shrinks and as new heap objects are allocated

CHAPTER 3. JML CONCEPTS 16

or become no longer reachable.

In Java memory locations hold either primitive memory values or object references.
Object references refer to objects that each have a set of defined fields or array ele-
ments, which are also memory locations. At any program execution point, the pro-
gram state consists of (a) the this object, (b) locations on the stack, (c) any field of
a class (static fields), and (d) any field or array element, recursively, of a location in
the program state.

In reasoning about the actions of a program, it is important to know, for each action,
what locations it affects. In particular, it is very helpful to know that everything but
some small set of locations is unaffected by a particular action.

For this purpose, JML has two important concepts: storeref expressions and location
sets. Location sets describe sets of memory locations. JML has a first-class type for
reasoning about locations sets, namely \locset, along with operations on values of
that type, such as union and intersection; this type and its operations are described
in §??.

Storeref expressions (storerefs for short), also described in §??, are a way to syntac-
tically designate particular values of type \locset, that is particular location sets.
For example, this.a[*] indicates the set of all array elements of the array referred
to by the reference in the field a of the this object in the current scope.

Storerefs and location sets are used in frame conditions, which are JML’s means to
state properties of program actions and to reason about program state.

3.3 Specification inheritance
Object-oriented programming with inheritance requires that derived classes satisfy
the specifications of a parent class, a property known as behavioral subtyping[?].
Strong behavioral subtyping is a design principle in JML: any visible specification
of a parent class is inherited by a derived class. Thus derived types inherit invariants
from their parent types and methods inherit behaviors from supertype methods they
override.

For example, suppose method m in derived class C overrides method m in parent class
P. In a context where we call method m on an object o with static type P, we will ex-
pect the specifications for P.m to be obeyed. However, o may have dynamic type C.
Thus C.m, the method actually executed by the call o.m(), must obey all the specifi-
cations of P.m. C.mmay have additional specifications, that is, additional behaviors,
constraining its behavior further, but it may not relax any of the specifications given
for P.m.

Specifications that are not visible in derived classes, such as those marked private,
are not inherited, because a client cannot be expected to obey specifications that it
cannot see. One additional exception to specification inheritance is method behav-
iors that are marked with the code modifier8.1.48.1.4. These behaviors apply only to the

CHAPTER 3. JML CONCEPTS 17

method of the class in which the behavior textually appears or to derived classes that
do not override the parent class implementation.

3.4 JML modifiers and Java annotations
The Java Modeling Language was defined prior to the introduction of annotations in
Java. Some, but not all, of the features of JML can now be textually represented as Java
annotations. Currently JML supports both the old and new syntactic forms.

3.4.1 Modifiers
Modifiers are JML keywords that specify JML characteristics of type names, meth-
ods, classes, fields, or variables. Examples are pure, model, and ghost. They are
syntactically placed just like Java modifiers, such as public.

Each such modifier has an equivalent Java annotation. For example

/*@ pure */ public int m(int i) { ... }

can be written equivalently as

@org.jmlspecs.annotation.Pure public int m(int i) { ... }

The org.jmlspecs.annotation prefix can be made implicit in the usual way by
including the import statement

import org.jmlspecs.annotation.Pure;
@Pure public int m(int i) { ... }

Note that in the second and third forms, the pure designation is now part of the
Java program and so the import of the org.jmlspecs.annotation package must
also be in the Java program, the package defining JML annotations must be avail-
able to the Java compiler when compiling the Java program. Consequently it is often
easier and less intrusive on the Java program to use the non-annotation style modi-
fiers.

All of the modifiers, their corresponding Java annotations, and the locations in which
they may be used are described in §??.

3.4.2 Type modifiers
Some modifiers are actually type modifiers. In particular non_null and nullable

are in this category. Thus the description in the previous subsection (§3.4.13.4.1) apply to
these as well.

However, Java 1.8 allows Java annotations that are designatied as applying to uses of
types to be applied to types wherever type names may appear. For example

CHAPTER 3. JML CONCEPTS 18

(@NonNull String)toUpper(s)

is allowed in Java 1.8 but is forbidden in Java 1.7.

The only annotations defined in JML that are type annoations are @NonNull and
@Nullable. Those are presented in the following section (§3.53.5).

3.5 Possibly null and non-null type annotations
With Java 8, Java annotations are permitted on types, not just on declarations. With
this feature it is possible to implement non-null reference types within Java. Other
tools, such as the Checker framework [?], have done so. Accordingly JML has adopted
nullable and non-null annotations as type annotations as well. Here nullable means
a reference is possibly null and non-null means it is never null.

3.5.1 Syntax
JML defines NonNull and Nullable in the package org.jmlspecs.annotation
as Java type annotations. That is, these annotations may be applied to any use of
a reference type. Equivalently /*@ non_null */ and /*@ nullable */ may be
used with the same semantics in the same program text locations.

Generally speaking, type annotations are placed immediately prior to the unqualified
type name that they modify. For example @NonNull Object denotes a type whose
values are references to objects of class Object, but which are never null. There are
two syntactical complications to be aware of:

3.5.1.1 Qualified type names

In the text
@NonNull A.@Nullable B,

where B is a nested class of A, the @NonNull applies to A and the @Nullable applies
to B. In JML one could also write

/*@ non_null*/ A./*@ nullable*/ B.

The complication is that A might be a package name; the nullness type annotations
may not be applied to packages. Thus for example, one might write

org.lang.@NonNull Object

to mean the same as @NonNull Object, but @NonNull java.lang.Object is il-
legal syntax.

3.5.1.2 Array types

With an array declaration such as Object[][] a, one might want to declare that a
itself is non-null, or that the elements of a are non-null, or that the elements of the
elements of a are non-null. The syntax for these cases is

• @NonNull Object[][] – an array of arrays of non-null Objects
• Object[] @NonNull [] – an array of non-null arrays of Objects

CHAPTER 3. JML CONCEPTS 19

• Object @NonNull [][] - a non-null array of arrays of Objects

3.5.1.3 var

Type annotations may not be applied to declarations using type inference, that is
var.

3.5.2 Defaults
JML defines that references are non-null by default. That default can be changed lo-
cally using the modifiers non_null_by_default and nullable_by_default (or
@NonNullByDefault and @NullableByDefault). These modifiers may be applied
to class (including interface, enum and record) declarations. Their effect is to set the
default to non-null or nullable for all relevant declarations or type uses within the re-
spective class declaration, unless overridden by another suchmodifier on an enclosed
declaration.

Any given declaration may have at most one of these modifiers.

Tools may also provide capabilities (such as command-line or environment options)
to set the global nullness default.

Methods used in a program specified with JML that do not have source code available
and do not have any explicit JML specifications have slightly different defaults. To
ensure soundness, a method’s formal parameters of reference type are assumed to be
non-null, but the return value, if of reference type, is assumed to be nullable.

3.5.3 Java and JML language featureswith type annotations
In the following

• an implicit nullness declaration is the default determined by the inner most
enclosing method or class declaration that has one of the modifiers described
in §3.5.23.5.2.

• an explicit nullness declaration is the presence of one of the type annotations
non_null, nullable, @NonNull, @Nullable (possibly fully-qualified). Ex-
plicit annotations override any implicit defaults. At most one of these annota-
tions may be applied to any given type name or declaration.

3.5.3.1 Field and ghost or model field declarations

The type of Java or JML field declaration is non-null if it is annotated as non-null or
it is not annotated as nullable and the implicit default is non-null.

If the type is non-null, then the variable must be initialized with a non-null value and
any assignments to the variable must assign non-null values.

CHAPTER 3. JML CONCEPTS 20

3.5.3.2 Local and ghost local declarations

The type of Java or JML local declaration is non-null if it is annotated as non-null or
it is not annotated as nullable and the implicit default is non-null.

If the type is non-null, then the variable must be initialized with a non-null value and
any assignments to the variable must assign non-null values.

3.5.3.3 Method and model method declarations

• Formal parameters behave like local declarations: explicit or implicit nullness
modifiers or annotations determine whether the formal parameter is permitted
to be null or not.

• The return type may also have a type modifier that determines whether the
return value is permitted to be null or not. The method return type is the one
place that the type annotation may be placed with all the other modifiers. That
is, one may write

public @NonNull java.lang.Object m1()

or
@NonNull public java.lang.Object m1()

in addition to
public java.lang.@NonNull Object m1() ,

and similarly using /*@ non_null */.

• Types in the throws clause of a method declaration are permitted to have type
annotations, but any nullness annotations are ignored: any thrown exception
is always non-null.

3.5.3.4 Class declarations

• the name of the class (or interface or enum or record) being declared may not
be annotated

• type names in extends or implements or permits clausesmay be annotated,
but these annotations are ignored

3.5.3.5 Type names in instanceof expressions

• The implicit default does not apply to instanceof expressions.
• For any type T, the expression o instanceof T behaves as in Java: the result
is false if o is null.

• For any type T, the expression o instanceof @NonNull T is false if o is
null.

• For any type T, the expression o instanceof @Nullable T is true if o is
null.

CHAPTER 3. JML CONCEPTS 21

3.5.3.6 Type names in cast expressions

• The implicit default does not apply to cast expressions.
• For any type T, the expression (T)o behaves as in Java: o may be null, and if
so, the result is null.

• For any type T, the expression (@Nullable T)o behaves as in Java: omay be
null, and if so, the result is null.

• For any type T, the expression (@NonNull T)o returns a non-null result; it is
a verification failure if o cannot be proven to be non-null.

3.5.3.7 Type names in new expressions

Type names in new expressions (e.g. new Object()) may have nullness type anno-
tations. However, such type annotations are ignored; the result of a new expression
is always non-null (or throws an exception).

3.5.3.8 Type names in array allocation expressions

TODO

3.5.3.9 Type names in catch statements

Type names in catch statements (e.g. catch (RuntimeException e)) may have
nullness type annotations. However, such type annotations are ignored; if the ex-
ception is of a type that the catch block is selected for execution, the value of the
declared variable (e.g. e) is always non-null.

The above applies to multi-catch blocks as well, as in
catch (RuntimeException | AssertionError e)

3.5.3.10 For statements

The declaration in a for statement, if present, acts like a local declaration: the explicit
or implicit (default) nullness modifiers and annotations apply. If the loop variable
is declared non-null, then both the initialization and update expressions must be
provably not null.

3.5.3.11 Enhanced for statements

TODO - arrays and iterators

3.5.3.12 Resource declarations in try statements

A declaration within the resource definition of a try statement is just like other local
declarations: if the declaration type is explicitly or implicitly non-null, then the initial-
ization expression must be provably non-null and the value of the declared identifier
may be assumed to be non-null; if the variable declared non-null is assigned within
the body of the try statement, the value assigned must be provably non-null.

CHAPTER 3. JML CONCEPTS 22

3.5.3.13 Declarations in JML oldmethod specification clauses

The declaration within a JML old clause (in a method specification) is just like other
local declarations: if the declaration type is explicitly or implicitly non-null, then
the initialization expression must be provably non-null and the value of the declared
identifier may be assumed to be non-null.

3.5.3.14 Declarations in JML \let expressions

The declaration within a JML expression is just like other local declarations: if the
declaration type is explicitly or implicitly non-null, then the initialization expression
must be provably non-null and the value of the declared identifier may be assumed
to be non-null. If the type is @NonNull but the initializer is not provably non-null,
the expression is not well-defined.

3.5.3.15 Declarations in JML generalized quantified expressions

Local variable declarations in \let, \forall and other quantified expressions be-
have like other local declarations: any explicit or implicit nullness modifiers or anno-
tations apply.

For \let, if the variable is declared non-null, then the expression that initializes the
variable must be provably non-null.

For quantified expressions, if the variable is declared non-null, then the range specif-
ically excludes the null value. Thus

\forall @NonNull Object o; range; value

is equivalent to
\forall @NonNull Object o; o != null && (range); value

3.5.3.16 Type names in JML signals clauses

Type annotations on type names in the exception declaration in a signals clause
are parsed but ignored. The value of the exception variable within the expression of
a signals clause is always non-null.

3.5.3.17 Type names in JML signals_only clauses

Type annotations on type names in signals_only clauses are parsed but ignored.

3.5.4 Generic types and type annotations
TODO

3.5.5 Interplay with other non-null annotations
There are other tools that also define the annotations @NonNull and @Nullable,
albeit in different packages than JML’s org.jmlspecs.annotation. A long list

CHAPTER 3. JML CONCEPTS 23

of such alternatives is given in the Checker project manual.11 Note that the names
and semantics of some of these alternate annotations can slightly differ from each
other.

The semantics of JML’s nullness annotations matches those of the Checker frame-
work and of nearly all other nullness annotations. The one exception, as documented
in detail by the Checker project22 is the annotations in SpotBugs/FindBugs.

However, the defaults for non-null types are different between JML and other sys-
tems.

Tools implementing JML may also interpret specific other annotations as equivalent
to JML’s annotations.

3.6 Visibility
To be written - note material written in Method Specifications section

3.7 Model and Ghost
To be written

3.8 Static and Instance
In Java

• declared names are non-static unless explicitly declared static
• except for fields of interfaces, which are by default static (and public)

JML allows model fields within interfaces to be declared non-static using the JML
modifier instance. This modifier may be used for fields within classes as well, but
here it is not necessary because the default is already non-static.

3.9 Determinism of method calls
Methods may be underspecified. An extreme case is a postcondition that is simply
true:

1 //@ ensures true;
2 int theInt();

Such methods are allowed to return any value consistent with the type of the result
and the postcondition — in this case, any int value at all.

1https://checkerframework.org/manual/#nullness-related-workhttps://checkerframework.org/manual/#nullness-related-work
2https://checkerframework.org/manual/#findbugs-nullablehttps://checkerframework.org/manual/#findbugs-nullable

https://checkerframework.org/manual/#nullness-related-work
https://checkerframework.org/manual/#findbugs-nullable

CHAPTER 3. JML CONCEPTS 24

A question then is, must two successive invocations of such a method yield the same
result, or not. In some cases, such as a method that returns a different random value
on each invocation, the answer would be no. But in most cases determinism is ex-
pected by the user.

It is possible to force determinism by using a ghost field, as in this example:

1 class A {
2 //@ spec_public
3 private int _theInt;
4

5 //@ assigns \nothing;
6 //@ ensures \result == _theInt;
7 public int theInt();
8 }

Now theInt() is specified to produce the same (unknown) value until a method call
or assignment occurs that might assign to _theInt.

However, as nearly all methods are expected to be deterministic, it is inconvenient,
extra boiler-plate to require such a specification and to only require an indication of
non-determinism. Accordingly, JML presumes that

method invocations of the same method with the same arguments in the same program
state produce the same result.

The following sections describe several different use cases related to determinism.

3.9.0.1 Pure methods

Pure methods do not change the state and furthermore may be called within spec-
ifications. In this example, all the assert statements can be proved true, though the
concrete value of theInt() is not known:

1 abstract class A {
2 //@ pure
3 abstract public int theInt();
4

5 public void test(A a) {
6 int x = theInt();
7 //@ assert theInt() == theInt();
8 //@ assert x == theInt();
9 int y = theInt();
10 //@ assert x == y;
11 //@ assert a == this ==> x == a.theInt();
12 }
13 }

CHAPTER 3. JML CONCEPTS 25

3.9.0.2 Effectively pure methods

Effectively pure methods are methods that do not change the state, but are not de-
clared pure. These methods may not be called within specifications, but nevertheless
are deterministic. Again, the asserts in the following example are all provable.

1 abstract class A {
2 //@ assigns \nothing;
3 abstract public int theInt();
4

5 public void test(A a) {
6 int x = theInt();
7 int y = theInt();
8 //@ assert x == y;
9 int z = a.theInt();
10 //@ assert a == this ==> x == z;
11 }
12 }

3.9.0.3 State-changing methods

A method that changes the program state (e.g., by assigning to some field) is not
able to be called twice in the same program state. In the following example, a call of
nextInt() changes the program state; thus x is not necessarily equal to y. In fact,
as the effective frame condition is assigns \everything;, very little is provable
at all.

1 abstract class A {
2 abstract public int nextInt();
3

4 public void test() {
5 int x = nextInt();
6 int y = nextInt();
7 //@ assert x == y; // NOT PROVABLE
8 }
9 }

3.9.0.4 Intentionally volatile methods

Java does not permit methods to be marked volatile, but the previous examples
point to how such a method might be specified.

1 abstract class A {
2 //@ spec_public
3 private int _theInt;
4 //@ assigns _theInt; reads _theInt;
5 abstract public int randomInt();
6

7 public void test1() {
8 int x = randomInt();

CHAPTER 3. JML CONCEPTS 26

9 int y = randomInt();
10 //@ assert x == y; // NOT PROVABLE
11 }
12 public void test2() {
13 int x = randomInt();
14 int y = randomInt();
15 //@ assert x != y; // NOT PROVABLE EITHER
16 }
17 }

The most conservative assumption about a method is that it is non-deterministic and
to presume otherwise is not sound. However, the default specification of a method
also includes assignable \everything. Thus any invocation of such a method is
specified to modify the heap, and consequently the results of successive invocations
of a method with default specifications are unrelated anyway. Any method specified
to be assignable \nothing does not change the state must be deterministic or it
is specified incorrectly, as it must depend on some property outside the program.

3.10 Observable purity
To be written - perhaps this is a separate chapter It might be early days to put this into
the standard.

3.11 Location sets and Dynamic Frames
To be written - see section in DRM on Data Groups

3.12 Arithmetic modes
JML defines various arithmetic modes, separately for integer arithmetic and floating
point arithmetic. These modes allow one to use mathematical numbers (integers and
reals) or their machine representations (fixed-bit-width integers and IEEE floating
point) in specifications and to enable or disable warnings about out of range compu-
tations.

The features for arithmetic modes are described in $1313.

3.13 Race condition detection
To be written - see later chapter - where shall we put this discussion Should that be part
of the standard?

CHAPTER 3. JML CONCEPTS 27

3.14 Redundant specifications
To be written

3.15 Naming of JML constructs
Most JML constructs can be optionally named. The name is a Java identifier that
is placed just after the keyword for the construct and is followed by a colon. For
example

requires positive: i > 0;

and
public normal_behavior usual_case: .

These names are currently only for external reference. They have no type or scope;
they are in a different namespace than any other Java or JML identifier; they may
be duplicates of each other. Because they are Java identifiers, they may not be Java
keywords. Tools may use them in error messages or in tool directives as the tools sees
fit.

In grammar productions, this optional name is indicated by <opt-name><opt-name>.

Although currently these clause and specification case names have no meaning
within JML, there are ideas for that to change.

• The name of a specification would have boolean type and be in scope in the
body of the method and in any textually later specification cases (but not its
own spec case). Its value would be the value of the conjoined precondition for
that case, that is, true in those initial program states that the specification case
applies, because its precondition is true.

• The names of clauses an identifiers representing the value of that clause if that
is meaningful, in the program state in which the identifier is used. So boolean
for requires, ensures, invariant, assert etc. clauses, \locset for assignable
clauses etc.

• In some cases it is useful to be able to refer, in a method body, to identifiers
declared in old clauses in the method specification. For this purpose, using
the name of a specification case as a state label in \old would be useful.

3.16 Specification inference
If no specifications are present for some program entity, JML presumes some defaults
(§1010). Alternatively, one could infer specifications based on the source code itself, on
the uses of a particular method elsewhere in the overall program, or even based on
external documentation. Inference of specifications would be very useful in reducing
the amount of specification text a user would have to write. However, as specifica-
tion inference is very much an area of research and JML does not want to presume
any specific inference capability, the JML language defines specific defaults without

CHAPTER 3. JML CONCEPTS 28

presuming any inference.

Tools supporting JMLmay in fact implement useful inferences, saving the writing and
reading of “obvious" specifications. We recommend that such inference be clearly
identified, that there be options to enable and disable inference, and the inferred
specifications be presented to the user for review and for possible inclusion in the
source code.

In addition, some caution is in order. If specifications are inferred based on the
source code, the inferred specifications can presumably be verified with respect to
that source code. That does not mean that that mutually consistent combination is
correct when compared to some external requirements or the intent of the software.
Thus inferred specifications should be reviewed by humans as well as being verified
against the implementation.

3.17 org.jmlspecs.lang package
Some JML features are defined in the org.jmlspecs.lang package. The
org.jmlspecs.lang package is included as a model import by default, just as the
java.lang package is imported by default in a Java file. org.jmlspecs.lang.*
contains (at least33) these elements:

• JML.informal(<string>) : This method is a replacement for (and is equiva-
lent to) the informal expression syntax (§12.1912.19) (* ... *). Both expressions
return a boolean value, which is always true.

• TBD

More to write here

3.18 Evaluation andwell-formedness of JML expres-
sions

JML text may be syntactically incorrect. Such errors are typically caught by the parser.
Syntactically correct text may be type-incorrect. Such errors are typically caught dur-
ing the name and type attribution phase of the compiler.

JML expressions must also be well-defined, that is have a logical meaning. For exam-
ple, for integer values i and j, the expression i/j is well-defined only if it can be
proven that j is never zero.

This means that predicates in JML are either true or false or not-well-defined — a
three-value system. In JML it is considered a verification error if an expression cannot
be proven to be well-defined; it is a runtime error if an expression is not well-defined
for a particular runtime execution of a program containing JML expressions.

The details of well-definedness are presented in §12.512.5.
3Tools implementing JML may add additional methods.

CHAPTER 3. JML CONCEPTS 29

3.19 Core JML
Should this section come later? Or even perhaps as an appendix. I guess the Core at-
tribute is a language definition property, but certainly note the discussion of tool sup-
port.

There is a tension in a language design project meant for several purposes: research,
practical, and educational use. That is, language design research tends to add an as-
sortment of experimental features; practical applications demand a robust but sub-
stantial set of language capabilities; however, educational use needs a small core that
can be put to use in examples. In addition, sophisticated features may be needed to
specify system libraries, which in turn are needed for educational use.

To help guide tool development, the features of JML are grouped into various cate-
gories:

Core features should be supported by all tools and should be the focus of education,

Advanced features are those needed for practical use and to specify the system
library,

Experimental features are the result of research or represent research in progress;
they are defined so that all tools will use the same syntax for them, but may
well evolve as more experience is gained in their use, and

Concurrent features to support reasoning about concurrency, which is not yet a
capability of JML

Tools may of course implement what they wish, but they are encouraged to follow the
JML definition, the above categorization and, where tool-specific extensions to JML
are implemented, to avoid conflicting with JML and to guard the use of extensions
with tool-specific conditional annotations (§4.1.54.1.5).

The following table states the category for each language feature. As context for the
reader, the table also lists which features are supported by the two most prominent
JML tools (at the time of writing). Note that not all features are necessarily executable
in RAC; more details on limitations of tools can be found in the tools’ respective
documentation. Tools will typically parse and ignore unsupported features.

The entries in the table have these meanings:

• Core — a Core construct
• Adv. — an Advanced construct
• Exp. — an Experimental construct
• ¶ — a deprecated construct or feature
• Conc. — a construct for concurrency
• Ext. — an extension to JML (not defined as standard)
• - — not supported by a given tool
• + — supported by a given tool,

These tables are being edited and are not (yet) settled

CHAPTER 3. JML CONCEPTS 30

Modifiers
olsep=0in

feature Category KeY OpenJML Comments
§11 code Adv. - +
§11 code_bigint_math Adv. - +
§11 code_java_math Adv. - +
§11 code_safe_math Adv. - + but is the default in Core
§11 extract Exp. - -
§11 function Adv.? - + trial OpenJML extension
§11 ghost Core + + fields
§11 helper Core + +
§11 immutable Adv.? - + extension?
§11 instance Core + +
§11 model Core + + fields, methods
§11 model Adv. - + classes
§11 monitored Conc. ? -
§11 non_null Core + + a type modifier
§11 non_null_by_default Core + +

§11 no_state Adv.? + - heap-independent model
method

§11 nullable Core + + a type modifier
§11 nullable_by_default Core + +
§11

public private
protected

Core + + for clauses and contracts

§11 peer rep read_only Adv. (+) -
§11 pure Core +
§11 query secret Exp. - + observational purity
§11 spec_bigint_math Adv. + + but is the default in Core
§11 spec_java_math Adv. + +
§11 spec_protected Adv. + +
§11 spec_public Core + +
§11 spec_safe_math Adv. - +
§11 strictly_pure Core? + - KeY

§11 two_state Adv. + - model method with access
to \old

§11 uninitialized Adv. ? -
§11 Java annotations

instead of modifiers
Adv. ? +

File level features

feature Category KeY OpenJML Comments
§11 model imports Core + +

CHAPTER 3. JML CONCEPTS 31

feature Category KeY OpenJML Comments
§11 model classes Adv. + +

Class- and field-level features

feature Category KeY OpenJML Comments
ghost fields Core + +
model fields Adv. + +
datagroups Adv. + +
model methods Adv. + +
axiom Adv. + +
constraint Adv. + +
in Adv. ? +
initially Adv. ? +
initializer Adv. ? +
invariant Core + +
maps Adv. - +
monitors_for Conc. - -
readable_if Adv. - +
represents Adv. + +
static_initializer Adv. ? +
writable_if Adv. - +

Method specifications

feature Category KeY OpenJML Comments
accessible Adv. + + or ’reads’
also Core + +
assignable Core + + KeY: also for loops; OpenJML uses

loop_writes for loops
behavior Core + +
callable Adv. - + or ’calls’?
captures Adv. - +
diverges Adv. + +
determines Ext. + - information flow
duration Exp. ? -
ensures Core +
exceptional_behavior Core +
forall Adv. + +
for_example Adv.Exp.? - - semantics unclear
implies_that Adv.Exp.? - - semantics unclear

inline Ext. - + OpenJML: inlines
method as its spec

measured_by Adv.Core? + - needs revision

CHAPTER 3. JML CONCEPTS 32

feature Category KeY OpenJML Comments
normal_behavior Core + +
old Adv. ? +
requires Core + +
signals Core + +
signals_only Core + +
when Conc. - -
working_space Exp. - -

XXX_free Adv. + -
specification ele-
ments w/o justifica-
tion

model program Adv. - - needs discussion
model program block Exp. - + needs discussion
model program clauses:
choose choose_if
extract or returns
continues breaks

Adv. - -

{| ... |} Adv. ? + (nested specs)
JML in Javadoc Dep. - -

Statement specifications

feature Category KeY OpenJML Comments
§11.111.1 assert Core + +
§11.211.2 assume Core + +
§?? debug Dep. - +
§B.1.10B.1.10 hence_by Dep. - -
§?? reachable Adv. - +
§11.811.8 set Adv. + +
§11.711.7 unreachable Adv. - +
§11 ghost label Core? ?+
§11 loop_invariant Core + +
§11 loop_writes Core + +
§11 (loop) decreases Core + +
§11 local ghost variables Core + +
§11 local model classes Adv.Exp. ? + or perhaps forbid?
§11 block contracts Adv. + +
§11 breaks, continues,

returns
Adv. + - in block contracts

§11 begin-end markers Ext.Adv.? - + OpenJML
§?? check Adv.? - + OpenJML
§?? havoc Adv.? - + OpenJML
§?? inline_loop Adv.? - + OpenJML
§?? show Core? - + OpenJML
§?? split Ext. - + OpenJML

CHAPTER 3. JML CONCEPTS 33

JML Types

feature Category KeY OpenJML Comments
\bigint Core + +
\locset Adv. + + builtin datatype
\real Adv. + +
\TYPE Adv. - +
built-in string, set, array, sequence,
map types? ?

\seq, \map ? + -

Operators and Expressions

feature Category KeY OpenJML Comments
<==> Core + +
<=!=> Core + +
==> Core + +
<== Dep. ? ?
.. Core + + in storeref indexing

only
<: Core + +
<# <#= Conc. ? -
(* *) Adv. + +
operator chaining Core + + Only < <=
and > >=
\bsum Adv.? + ?
\bigint_math Adv. ? +
\count Core - + what does this do?
\duration Exp. ? -
\elemtype ? ? +
\everything Core + +
\exception Ext. - + like \result
\exists Core + +
\forall Core + +
\fresh Core + +
\index Dep.? + + deprecated in favor

of \count
\invariant_for Core + +
\is_initialized Adv. ? -
\java_math Adv. ? +
\lbl Adv. ? +
\lblpos Dep. ? +

CHAPTER 3. JML CONCEPTS 34

feature Category KeY OpenJML Comments
\lblneg Dep. ? +
\lockset Conc. ? +
\max (locks) Conc. ? -
\max Adv. + +
\min Adv. + +
\new_elems_fresh Adv.? + ? needed for dyn

frames
\nonnullelements Core + +
\nothing Core + +
\not_assigned Adv. ? - never used, I think
\not_modified Adv. ? +
\num_of Adv. + +
\old Core + + w/o label
\old Core + + w/ label
builtin labels ? ? + \LoopInit etc.
\only_accessed Adv. ? - never used, I think
\only_assigned Adv. ? - never used, I think
\only_called Adv. ? - never used, I think
\only_captured Adv. ? - never used, I think
\past ? ? -
\pre Core ? +
\product Adv. + +
\reach ? ? - is this still in JML?
\result Core + +
\safe_math Adv. ? +
\space Exp. ? -
\static_invariant_for Adv. + -
\strictly_nothing Ext.? + - KeY
\sum Adv. +
\type Adv. - +
\typeof Core - +
\values Core + +
\working_space Exp. ? -
set comprehension Adv. ? -

Miscellaneous features

feature Category KeY OpenJML Comments
§11 //@ Core + +
§11 /*@ @*/ Core + +
§11 // comments in specs Core + +
§11 conditional annotations Core? ? +
§11 embedded annotations Adv. ? +

CHAPTER 3. JML CONCEPTS 35

feature Category KeY OpenJML Comments

§11 org.jmlspecs.lang Core ? + package automatically im-
ported

§11 ...redundantly Adv. + + Typically implemented by ignoring
the redundantly suffix

§11 .jml files Adv.? ? + needed for library specs
§11 JML in Javadoc Dep. - -
§11 nowarn Dep. ? + line annotation

\dl_ Ext. - - MU: or some othermeans of
tool-spec exts.

Features to consider:

• recommends-else

• How to specify lambda functions

• naming and operations of \locset

• other primitive types

Chapter 4

JML Syntax

4.1 Textual form of JML specifications
Specifications in JML for a Java program are written either as specially formatted
comments within the Java source text, described in this section, or in standalone
.jml files, as described in §1717. The latter are quite similar to the former, just in a
separate file.

4.1.1 Java lexical structure
The lexical structure of Java source text (typically, but not necessarily contained in
files in the local file system) is described in the chapter on Lexical Structure of the
JLS [11](Ch. 3).

Java source text is written in unicode using the UTF-16 encoding. It is permissible to
represent unicode characters with unicode escapes, which use only ASCII characters
and have the form \uxxxx.The source text is translated into a sequence of (Java)
tokens using the following steps:

• The source text is converted to (unicode) character sequence lines, by abstract-
ing the line ending characters used on various platforms into single line termi-
nator tokens.

• Then, beginning at the beginning of the character sequence and continuing
with the next token immediately after identifying the previous token, the char-
acter sequence is iteratively divided into Java tokens, which are

– reserved words
– identifiers
– literals
– operators
– separators (i.e., punctuation)

36

CHAPTER 4. JML SYNTAX 37

– white space
– comments
– line terminators

• For each token, character sequences are tokenized into the longest valid to-
ken, whether or not that token can be parsed as part of a legal Java program.
Thus white space is needed to separate identifiers, which would otherwise be
tokenized as a single longer identifier; similarly -- is parsed as a single oper-
ator rather than two - operators, even if -- cannot form a legal Java program
whereas two - operators might. The one exception is that consecutive > char-
acters, which by the longest token rule would be tokenized as >> or >>> shift
operators, but in the context of closing generic type arguments are separated
into separate > tokens, as in List<List<Object>>.

This tokenizing is inclusive enough that almost any sequence of characters can be
translated to a sequence of Java tokens. The only errors in this process are from
illegal characters such as #, ‘, illegal escape sequences, illegal unicode characters,
ill-formed floating-point literals, and un-closed string literals and comments.

The Java lexical analyzer then discards white space tokens, comment tokens, and line
terminators to form the token sequence that is the input to the Java parser.

4.1.2 JML annotations within Java source
JML adjusts the above process in one small way. Java comments (by the rules of
Java) are (by the rules of JML) identified as either JML annotation comments or as
plain Java comments. The latter are discarded by both Java and JML. The former are
still discarded by a Java parser (because they are Java comments), but retained by
JML tools.

The JML annotation text is the content of a JML annotation comment without the
beginning and ending comment markers, as defined below. The JML annotation text
is tokenized into a sequence of JML tokens located at the position of the comment
token in the Java token sequence.

Because JML annotation comments are Java comments, they do not affect the inter-
pretation of Java source as seen by Java tools. It is an important rule that

a JML tool must semantically interpret the Java portion of Java source that includes
JML annotation comments in precisely the same way as defined by the Java Language
Specification, that is, as a Java compiler would.

A complementary rule is that
No text outside of a Java comment may be considered as part of JML annotation text.

Two examples demonstrate a bit of the intricacies. The text (as one complete text
line)

/*@ ghost String s = "asd*/";*/

consists of a Java comment that is a JML annotation comment, namely
/*@ ghost String s = "asd*/,

CHAPTER 4. JML SYNTAX 38

followed by four tokens, namely a quote, a semicolon, a star and a slash. Thus the
JML annotation text is just ghost String s = "asd, which ends in an unclosed
string literal. On first glance one might think that the JML annotation text should be

ghost String s = "asd*/";,
which would be a legitimate JML declaration, but that reading does not agree with
the first rule above, which requires that the JML annotation comment end with the
first occurrence of */.

A second example is

1 public
2 //@ invariant a != null;
3 void mm() {}

Here a Java compiler would interpret public as a modifier of the method declaration
that follows the comment. Consequently a JML tool may not interpret the public
modifier as belonging to the invariant. To do so would violate the rule that the JML
token sequencemay only consist of tokens derived from text within JML annotations.
In fact, in this case, the JML annotation text would be illegal because it is placed
within a Java method declaration.

4.1.3 JML annotations
JML annotation comments are specially formatted Java comments. The determina-
tion of whether a Java comment is a JML annotation comment is made in the context
of a globally-defined set of keys, each of which are Java identifier tokens; the keys are
defined independent of the source text itself. JML tools may provide mechanisms to
declare the set of keys defined for a particular invocation of the tool.

• A Java comment that begins with the regular expression
/[/|*]([+|-]<java-identifier>)*@+

is a JML annotation comment if

– (a) there are no <java-identifier> tokens (that is, the comment begins with
either //@ or /*@ followed by zero or more @ characters

– or (b) (i) if there are any identifiers (in the regular expression above) pre-
ceded by a + sign, then at least one of themmust be a key, and (ii) if there
are any identifiers (in the regular expression above) preceded by a - sign,
then none of them must be a key.

• Anything not matching the above regular expression or not meeting the rules
on keys is not a JML annotation comment; it is a plain Java comment.

• Note that the permitted regular expression allows no white space.

Also note this terminology:

• JML annotation comments meeting condition (a) above are unconditional JML
annotation comments.

CHAPTER 4. JML SYNTAX 39

• JML annotation comments meeting condition (b) above are conditional JML
annotation comments, as they depend on the set of keys.

• JML annotation comments that are within Java line comments are JML line
annotation comments.

• JML annotation comments that are within Java block comments are JML block
annotation comments.

4.1.4 Unconditional JML annotations
By the definitions above, unconditional JML annotation comments either

• (a) begin with the characters //@ and extend through the next line terminator
or end-of-input, or

• (b) begin with the characters /*@ and extend through the next occurrence of
the characters */, possibly spanning multiple lines.

Examples of unconditional JML annotation comments are

1 //@ requires a == b;
2

3 /*@@@ requires true;
4 ensures a == b;
5 @@@*/
6 }

4.1.5 Conditional JML annotation comments
If the identifiers RAC and OPENJML are declared as keys but DEBUG is not, then these
are conditional JML annotation comments:

1 //+RAC@ requires true;
2 //+RAC-DEBUG@ requires true;
3 /*+OPENJML@@@ requires true; @@@*/
4 //-DEBUG@ requires true;

In lines 1 and 3, there is a key occurring with a + sign; in line 2, there is a key occurring
with a + sign and there are no keys with a - sign; in line 4 there are no positive
identifiers and the one negative identifier is not a key.

These are plain Java comments:

1 //-RAC@ requires true;
2 //+OPENJML-RAC@ requires true;
3 //+DEBUG@ requires true;
4 //+RAC @ requires true;

In lines 1 and 2, there is a key in the comment opening marker that has a - sign, so
these are not JML annotation comments, despite the presence of a key with a + sign

CHAPTER 4. JML SYNTAX 40

in line 2; in line 3 the identifier in the comment opening marker is not a key; and
line 4 is a plain Java comment because of the white space between the // and the
@.

4.1.6 Default keys
Tools should by default declare these identifiers as keys:

• DEBUG — not declared by default, but reserved
• ESC — by default, declared when static checking (deductive verification) is be-
ing performed by a tool, otherwise not

• RAC — by default, declared when runtime assertion checking is being per-
formed by a tool, otherwise not

• OPENJML — reserved for use by the OpenJML tool and presumed to be defined
when that tool is used and otherwise not

• KEY — reserved for use by the KeY tool and presumed to be defined when that
tool is used and otherwise not

Other identifiers may be reserved for other tools. Keys are case-sensitive, but tools
may relax that rule, so different identifiers used as keys should not intentionally be
the same when compared case-insensitively. The tool-specific keys are intended to be
used to include or exclude JML annotation text that contains tool-specific extensions
or tool-specific unimplemented JML features, respectively.

4.1.7 Tokenizing JML annotations
The JML annotation text is obtained from a JML annotation comment by

• removing the opening comment marker as defined in §4.1.34.1.3

• removing the closing comment marker which is either the line terminator for a
line comment or the characters [@]*[*][/] for a block comment (that is, the
usual */ comment ending marker plus any number of consecutive preceding @
characters

The JML annotation text resulting from the above is then tokenized in the same way
as Java source text is tokenized, with the following additions:

• character sequences matching [\]<java-identifier> are valid identifiers in JML
annotation text. Examples are \result and \type (in current practice, all
such identifiers are all alphabetic after the backslash). These are defined as
<jml-identifier>s.

• JML defines additional operators: .., ==>, <==>, <=!=>, <:, <:=, <#, and <#=
.

• JML defines some additional two-character separators: {| and |}.

• JML defines an additional white space token: within a block annotation com-
ment, the character sequence [\t]*[@]+ (that is, optional white space fol-

CHAPTER 4. JML SYNTAX 41

lowed by one or more consecutive @ characters) immediately following a line
terminator is a white space token.

In addition, an integer literal followed by a period followed by a period followed by
an integer literal (e.g., 1..2) should, by the longest token rule, be tokenized as two
floating-point literals (1. and .2 in the above). JML however alters the rule in this
case to tokenize such a character sequence as an integer literal, the JML .. token,
and an integer literal (as in 1 .. 2).

After being tokenized, any white space, plain Java comments, and line terminators
are discarded; the result is the token string comprising the JML annotation.

For example, in

1 /*@@@@@@@@@@@@@@@@@@@@@@@@
2 @@ requires x > 0;
3 @@ ensures \result < 0;
4 @@@@@@@@@@@@@@@@@@@@@@@@*/

none of the @ characters is part of the JML annotation token string (after dropping
white space tokens). But in this example

1 /*@@@@@@@@@@@@@@@@@@@@@@@@@
2 @ requires x > 0 @; @ // invalid @ in and after text
3 @ @ ensures \result < 0; // second @ is invalid
4 @@@@@@@@@@@@@@@@@@@@@@@@@*/

the end-of-line comments identify some @ tokens that are invalid.

4.1.8 Embedded comments in JML annotations
Because the text of Java comments is not tokenized, Java does not have embedded
comments. JML, however, does tokenize the text of a JML annotation and that text
may contain embedded Java comments. Those embedded Java comments are treated
just like non-embedded Java comments: a determination is made as to whether the
Java comment is a JML annotation comment; if so, the JML annotation text is tok-
enized and those tokens become part of the token stream of the enclosing JML an-
notation. This process can happen recursively.

Here are some pairs of example JML annotation text and corresponding JML token
sequences (omitting white space, line terminator, and comment tokens)

• //@ requires // comment

identifier token (requires)

• //@ requires /* comment */ true;

identifier (requires), literal (true), semicolon

• //@ requires /*@ true */ ;

identifier (requires), literal (true), semicolon

CHAPTER 4. JML SYNTAX 42

• //@ requires //@ true ;

identifier (requires), literal (true), semicolon

• If the identifier RAC is a declared key
//@ requires //-RAC@ true ;

identifier (requires)

• If the identifier RAC is a declared key
//@ requires //+RAC@ true ;

identifier (requires), literal (true), semicolon

• If the identifier RAC is not a declared key
//@ requires //+RAC@ true ;

identifier (requires)

Note though that block comments embedded in line comments must begin and end
within that line comment. Also block comments cannot be embedded in other block
comments because the first */ will end the outer block comment, leaving the inner
comment unclosed.

Overuse of embedded comments results in difficult to read text and poor style. The
two principal use cases are these:

• adding plain Java comments inline, as in

1 /*@
2 @ requires true; // precondition
3 @ writes a; // frame condition
4 @ ensures a > 0; // postcondition
5 @*/

• conditionally discarding portions of a JML annotation for a particular situation,
such as, commonly, to exclude non-executable JML features during runtime
asssertion checking:

1 /*@
2 @ requires true; // precondition
3 @ //-RAC@ writes a; // frame condition,
4 @ // ignored during RAC
5 @ ensures a > 0; // postcondition
6 @*/

A similar case is to include or exclude annotations particular to a given tool.

4.1.9 Compound JML annotation token sequences
A consecutive sequence of JML annotation comments in the source text is combined
into a single JML annotation token sequence by concatenating the token strings from
the individual JML annotation comments. The JML annotation comments in the se-
quence must be separated only by discarded Java tokens (white space, line termi-
nators and plain Java comments). Note in particular that it is the token strings that

CHAPTER 4. JML SYNTAX 43

are concatenated, not the text. Thus any token, such as a string literal or a Java text
block, must still be contained within one JML annotation comment.

A common use case for this language feature is to write JML text such as

1 //@ requires a
2 //@ && b
3 //@ && c;

where a, b, and c are stand-ins for potentially long expressions that are best broken
across lines. A block annotation comment could also be used here.

The JML annotation comments in the sequence may be any mix of line or block com-
ments.

Obsolete syntax JML previously allowed JML text within Javadoc comments. This
is no longer permitted or supported.

Issues with the JML textual format There are a few issues that can arise with
the syntactical design of JML.

First, JML annotation token sequences are the concatenation of token sequences
from individual JML annotation comments. These annotation comments may be
separated by large blocks of discarded Java tokens, such as a large jmldoc comment.
An error, say in terminating an expression, in an earlier JML annotation may not
be recognized by the parse until a later annotation, leading to the parser issuing an
error message quite far removed, textually, from where the correction is needed.

Second, other tools may also use the @ symbol to designate comments that are special
to that tool. If JML tools are trying to process files with such comments, the tools will
interpret the comments as JML annotations, likely causing amyriad of parsing errors.

Third, Java uses the @ sign to designate Java annotations. That in itself is not an
ambiguity, but sometimes users will comment out such annotations with a simple
preceding //, as in

//@MyAnnotation

This construction now looks like JML. The solution is to be sure there is whitespace
between the // and the @ when a Java comment is intended, but it may not always
be possible for the user to perform such edits. Tools may provide other options or
mechanisms to distinguish JML from other similar uses.

4.2 Locations of JML annotations
A JML annotation’s token string must conform to the grammatical rules presented
throughout this document. The placement of JML annotation comments is also sub-
ject to various rules.

CHAPTER 4. JML SYNTAX 44

JML annotations fall into the following categories, each of which is described in detail
in cross-referenced sections, along with a grammar for both the JML annotation and
the location of the JML annotation within the Java source:

• modifiers (§11) — single words, like the Java modifiers public and final; these
are placed as part of the declaration they modify, mixed in with Java modifiers.
Examples are pure and nullable.

• file declarations (§11) – these are placed with Java top-level declarations, such
as import statements or model class declarations

• type specification clauses (§11) — these are placed where Java places members
of types, such as field and method declarations

• method specifications (§11) — these are placed in conjunction with the declara-
tion of a method’s signature. They in turn consist of

– keywords
– punctuation
– clauses

• field specifications (§11) — these are placed in conjunction with a field declara-
tion

• statement specifications (§11) — these are placed like statements in a code block
(a method or initializer body)

Thus all JML annotations consist of single-word tokens (modifiers and keywords),
punctuation (one ormore sequential non-alphanumeric characters), and clauses, which
themselves begin with keywords.

JML annotations that are not in a prescribed location are errors (which tools should
report).

4.3 JML identifiers and keywords vs. Java reserved
words

As described in the previous section, JML annotations include, among other things,
identifiers that have special JMLmeaning, as modifiers and keywords. Any Java iden-
tifier that is in scope for a JML annotation can potentially be usedwithin a JML clause;
consequently we want to be sure that there are no name clashes. There are a few as-
pects of JML design that intend to avoid possible name clashes. Again, these are
presented more formally in later chapters.

• Java reserved words may not (by Java’s rules) be used in Java expressions or
declared as names in Java. These reserved words are also reserved in JML and
may not be declared as new JML names, nor are they used as JML keywords.
JML keywords are not reserved.

CHAPTER 4. JML SYNTAX 45

• Specialized JML identifiers used in expressions begin with a backslash, so they
cannot be confused with Java identifiers. Examples are \result and \old.

• JML operators and punctuation (composed of non-alphanumeric characters)
are either the same as in Java (e.g., +) or something not in Java (e.g., <==>). As
authors of Java programs cannot add new operators or punctuation, there is no
possibility of name clashes. There is a possibility of a backwards-compatibility
clash if the Java language adds new operators in the future, such as perhaps
==>, that clash with existing JML operators.

• JML modifiers, keywords, and the initial keywords of clauses are all regular
Java identifiers. All JML modifiers and clauses begin with such a keyword and
so can be recognized by that keyword. Thus on parsing a JML annotation, the
parser considers the first token found, which, if not an operator or punctuation,
must be an identifier, which then is either a standalone word (e.g., a modifier)
or is the beginning of a clause. Importantly, these keywords are not reserved
words and they are different from all of Java’s reserved words11; however JML
keywordsmay be Java or JML identifiers declared as programnames. For exam-
ple, requires is a keyword beginning a method precondition, as in requires
i >= 0;. But requires could also be an identifier declared say as either a
Java or JML field name. Thus it is possible to have a precondition requires

requires >= 0;. If it is Java that declares requires, such a construct might
be unavoidable; if JML does so it should likely be considered poor style owing
to difficult readability.

• JML also uses class names that fall into conventional Java naming conventions
but are in packages reserved for JML use. Such packages begin with either
org.jmlspecs or org.openjml. It is conceivable but unlikely that Java users
might define their own packages and classes that use this same name, in which
case there would be an irreconcilable name conflict. However, the Java library
itself would not use package names beginning with org.

• Declarations of fields, methods, and classes within JML cannot declare the
same names as corresponding Java declarations in the same scope. For ex-
ample, a declaration of a JML ghost field in a Java class may not have the same
name as a Java field declaration. Simply put, if Java does not permit adding
such a declaration (because of a duplicate declaration), then JML may not in-
troduce the declaration.

• There is a situation that is unavoidable. A Java class Parent may contain a
declaration of a JML name n that is appropriately distinct from any potentially
conflicting name in Parent. However, unknown to the specifier of Parent, a
class Child can later be derived from Parent and the (Java) author of Child,
not knowing about the JML specifications of Parent, may declare a name n
in Child. In such a case, with a local Java entity and an inherited JML entity

1More precisely, the JML keywords are all different from any of Java’s reserved words that might start
a declaration, notably type names. The Java reserved word assert is also a JML keyword, but assert at
the beginning of a JML clause is unambiguously the start of a JML clause

CHAPTER 4. JML SYNTAX 46

having the same name, what does the name refer to? In Java code, the name
refers of course to the (one) Java declaration. In JML code the ambiguity is
resolved in favor of the Java name. In this case the JML entity could be referred
to in JML code within Child as super.n or ((Parent)x).n.

4.4 JML Lexical Grammar
In the following grammar, the lexical syntax is defined using regular expressions,
using the standard symbols: parentheses for grouping, square brackets for a choice
of one character, ?, *, + for 0 or 1, 0 or more and 1 or more repetitions. An identifier
within angle brackets and in italics is a lexical non-terminal; terminal characters are
in bold; backslash is used to escape characters with special meaning, but no escape
is needed within square brackets. White space is included only where specifically
indicated. The references to JLS are to the Java Language Specification, specifically
the chapter on lexical structure [11].

<compound-jml-comment> ::= <simple-jml-comment>+

<simple-jml-comment> ::=
<jml-line-comment> | <jml-block-comment>

<jml-line-comment> ::=
//<jml-comment-marker>
<jml-annotation-text>
<line-terminator>

<jml-block-comment ::=
/* <jml-comment-marker>
<jml-annotation-text>
<jml-block-comment-end>

<jml-comment-marker> ::=
([+|-]<java-identifier>)*@+

in which the java identifiers must satisfy the rules about keys stated in §4.1.34.1.3

<jml-block-comment-end> ::= @**/

<plain-java-comment> is defined in §3.7 of the JLS, but excludes any character sequence
matching a <compound-jml-comment>

<java-identifier> is defined in §3.8 of the JLS (and excludes any <reserved-word>)

<jml-annotation-text> ::=
<identifier>

|<reserved-word>
|<literal>
|<operator>
|<separator>
|<white-space>
|<simple-jml-comment>

CHAPTER 4. JML SYNTAX 47

|<plain-java-comment>
|<line-terminator>

<identifier> ::= <java-identifier> | <jml-identifier>

<jml-identifier> ::= [\]<java-identifier>
Note that users cannot define new <jml-identifier>s and all <jml-identifier>s currently defined
in JML are purely alphabetic and ASCII after the backslash.

<reserved-word> is defined in §3.9 of the JLS

<literal> is defined in §3.10 of the JLS

<operator> ::= <java-operator> | <jml-operator>

<java-operator> is defined in §3.12 of the JLS

<jml-operator> ::= ..|==>|<==>|<=!=>|<:|<:=|<#|<#=

<separator> ::= <java-separator> | <jml-separator>

<java-separator> is defined in §3.11 of the JLS

<jml-separator> ::= {|||}

<white-space> ::= <java-white-space> | <jml-white-space>

<java-white-space> is defined in §3.6 of the JLS

<jml-white-space> ::=
<line-terminator> <java-white-space>? [@]+

within a <jml-block-comment>

<line-terminator> is defined in §3.4 of the JLS

jml-white-space is really a kind of line-terminator; make the names defined here match
those introduced at the beginning of the chapter

4.5 Definitions of common grammar symbols
TODO - don’t know if we have enough to make this section worthwhile

This section assembles the definitions of a number of grammar non-terminals that
are used throughout the manual. See §2.32.3 for information about how the productions
of the grammar are written.

The grammar uses these syntactic tokens as non-terminals. All other lexical tokens
are presented as literal terminals in the grammar productions.

• <java-identifier> — a character sequence allowed as an identifier by Javaidentifier by Java. Note
that <java-identifier><java-identifier> excludes Java reserved words, some of which are context-
dependent.

• <jml-identifier> — an identifier with its preceding backslash
• <string-literal><string-literal>—a traditional ("-delimited) stringtraditional ("-delimited) string or a text block ("""-delimited)text block ("""-delimited)
• <character-literal> — as in Javaas in Java

https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html#jls-3.8
https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html#jls-3.10.5
https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html#jls-3.10.6
https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html#jls-3.10.4

CHAPTER 4. JML SYNTAX 48

• <integer-literal> — as defined in Javaas defined in Java. Note that multi-digit integer literals be-
ginning with a 0 are octal numbers, those beginning with 0x or 0X are hexadec-
imal, those beginning with 0b or 0B are binary, and that these literals may have
a trailing l or L and may include underscore characters.

• <fp-literal> — as in Javaas in Java

Common grammar symbols

A possibly qualified name is a sequence of dot-separated identifiers:
<qualified-name> ::= <java-identifier><java-identifier> (. <java-identifier><java-identifier>)*

A type name possibly has type parameters:
<type-name> ::= <qualified-name><qualified-name> [< <type-name><type-name> . . . >]

A predicate is just an expression whose type is boolean:
<predicate> ::= <expression><expression>

An expression is either a specifically JML expression or a Java expression that permits
JML sub-expressions.
<expression> ::= <jml-expression><jml-expression> |<java-jml-expression><java-jml-expression>

A java-jml-expression is a Java-like expression that may have JML subexpressions:
<java-jml-expression> ::=

<java-identifier><java-identifier>
| Do we replicate the Java grammar here, adjusted?

An optional name for a clause or specification case:
<opt-name> ::= [<java-identifier><java-identifier> :]

https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html#jls-3.10.1
https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html#jls-3.10.2

Chapter 5

JML Types

To abstractly model program structures in specifications, specifiers need basic nu-
meric and collection types, along with the ability to combine these into user-defined
structures. All of the Java class and interface type names and all Java primitive type
names are legal and useful in JML: int short long byte char boolean
double float. In addition, JML defines some specification-only types, described
in subsections below. There are several needs that JML addresses:

• Specifications are sometimes best written using infinite-precision mathemati-
cal types, rather than the fixed bit-width types of Java. Indeed, users typically
prefer to (and intuitively do) think in terms of mathematical integers and reals,
to the point of missing overflow and underflow bugs. JML’s arithmetic modes
(§1313) allow choosing among various numerical precisions.

• Java’s handling of class types only expresses erased types; JML adds a type and
operations for expressing and reasoning about generic types.

With respect to reference types, note the following:

• Java’s reference types are heap-based and so creation of and operations on
these types may have side-effects on the heap.

• Though pure (side-effect free) methods on Java classes can reasonably be used
in specifications, the Object.equals method cannot be pure without signif-
icantly restricting the set of programs that can be modeled.

• Side-effect-free types for specification should have value semantics, but classes
constructed using Java syntaxwill still have a distinction between == and .equals.

Thus, although Java types can be named in specifications, types used for model-
ing need to be pure, value-based types that do not use non-pure methods of Java
classes.

This leads us to consider types built-in and predefined in JML. At the cost of extra

49

CHAPTER 5. JML TYPES 50

learning on the part of users, such types can have more natural syntax and clearly
be primitive value types. Also, built-in types can be naturally mapped to types in
SMT provers that have theories for them (e.g. the new string theory in SMT-LIBv2.6
[99]).

Specifically, JML’s builtin types have the following properties:

• the type name begins with a backslash (e.g., \seq)
• if a builtin type takes type parameters, those parameters may be Java reference
types or JML builtin types, but not Java primitive types

• they have value semantics, like Java primitive types: values are immutable and
all operations produce new values

• there is no distinction between == and .equals. Both are defined as structural
equality. For example, two sets are equal (==) iff they have the same elements.

• where equality of elements is needed (e.g., sets, sequences, and maps), Java ==
is used

• in JML terms, all operations
– are pure, i.e., they do notmodify the program state (assignable \nothing;)
– are terminating (diverges false;)
– are independent of the heap (i.e., heap_free and reads \nothing)
– are nonnull — there are no null values of value-semantics types
– are immutable, i.e. any visible fields are final

• for the most part, the operations on builtin types follow Java syntax, though
where the semantics is obvious some infix operations are defined as well

5.1 Java reference types
Java reference types may be used in specifications, both library classes and user-
defined classes. However, an important restriction applies: all operations on values
of such types must be pure (§11), that is, they must not have side-effects and must be
declared to be pure.

Consequently, no allocation of new objects is allowed in specification expressions and
no operations that change an object’s state. A significant implication of this rule is
that methods such as toString and equals cannot generally be used in specifica-
tions. These methods of Objectmay be overridden by methods in arbitrary derived
classes, and they may be implemented with side-effects. Accordingly, they cannot
be (and are not) declared pure in java.lang.Object without severely restricting
the implementers of other classes. Reference equality, inequality and comparisons
against null are all permitted.

A library or user-defined class that is final and has side-effect-free implementations
for methods like equals and toString may declare them pure and use them in
specifications.

Java classes designed with mathematical, value semantics (an immutable class with
all pure methods) can be used to model the behavior of a Java program. The methods

CHAPTER 5. JML TYPES 51

of such a class would be defined in their own specifications using techniques such
as an algebraic specification. For consistency and convenience, some types of this
nature are provided as built-in specification types in JML and are described later in
this chapter.

5.1.1 Java enums
An exception to the discussion of the previous section is Java enum types. As enums
are immutable types, enum values and built-in operations on enums can be used in
specifications.

• == and != — equality and inequality of enum values

In addition Java defines several built-in methods for enums. Each of these has some
implicit specifications. For a given enum type E the following hold (in the examples,
E is presumed to have the three values A, B, C:

• the class E is final; that is, it may not be the parent class of any other class

1 //@ axiom \forall \TYPE t;; t <: \type(E) ==> t == \type(E);

• the class E extends Enum<E>, which extends Object; class E may implement
interfaces

1 //@ axiom \forall \TYPE t;; \type(E) <: t ==> (t == \type(Enum<T>) || t == \type(Object));

• the declared values of E are each non-null, are all distinct from each other, and
are final

1 //@ axiom \distinct(null, A, B, C);

• extensionality — any value of type E is either null or is one of the declared
constants

1 //@ axiom \forall nullable E e;; e == null || e == A || e == B || e == C;

• the static method values() returns an array (E[]) of all the enum constants
of E, in the textual declaration order

1 //@ public normal_behavior
2 //@ ensures \result.length == 3; // number of constants
3 //@ ensures \result[0] == A && \result[1] == B && \result[2] == C;
4 //@ pure
5 public static final E{} values();

• the static method valueOf(String) returns either the constant of type E

with the given name or

1 //@ public normal_behavior
2 //@ requires n != null && (* n is e.name() for some E e *);
3 //@ ensures \result.name().equals(n); // FIXME - TODO
4 //@ also public exceptional_behavior

CHAPTER 5. JML TYPES 52

5 //@ requires n == null || !(* n is e.name() for some E e *);
6 //@ signals (NullPointerException) n == null;
7 //@ signals (IllegalArgumentException) !(* n is e.name() for some E e *);
8 //@ signals_only NullPointerException, IllegalArgumentException;
9 public static final /*@ non_null */ E valueOf(/*@ nullable */ String n);
10 \end{itemize}
11 \item instance methods \jml{name} and \jml{toString()} both return the name of an enum constant as given in its declaration
12 \item instance method \jml{ordinal()} returns an \jml{int} giving the 0-based position of the enum constant
13 in textual declaration order
14 \item instance method \jml{compareTo(E e)} compares enum constans according to their \jml{ordinal} value:
15 \begin{lstlisting}
16 //@ public normal_behavior
17 //@ requires e != null;
18 //@ ensures \result < 0 <==> this.ordinal() < e.ordinal();
19 //@ ensures \result == 0 <==> this.ordinal() == e.ordinal();
20 //@ ensures \result > 0 <==> this.ordinal() > e.ordinal();
21 //@ also public exceptional_behavior
22 //@ requires e == null;
23 //@ signals_only NullPointerException;
24 //@ pure
25 public int compareTo(nullable E e);

getDeclaringClass vs getClass, equals, hashCode, clone

T note some restrictions on modifiers for enums

weigl: More particular, can Enum Constants carry JML modifiers. After JLS only anno-
tations are allowed.

5.1.2 Java records
Write something

5.1.3 Java Streams
Discuss this – streams and other functional programming bits are handy within specifi-
cations

5.2 boolean type
The Java boolean type may be used as is in JML, along with the usual Java opera-
tors:

• == and !=
• ! (not)
• & and | (and, or)
• && and || (short-circuiting and, or)
• Java ternary operation (? :)

CHAPTER 5. JML TYPES 53

weigl: auto boxing enabled?

In addition JML adds these operations:

• <==> and <=!=> (§12.912.9)

• ==> (implies operation, §12.812.8)

In Java programs, && and || are very commonly used in preference to the boolean &
and | because the left operand may be necessary to avoid a runtime error in evaluat-
ing the right operand and because it may provide some performance benefit. For de-
ductive verification, the short-circuit operations are still useful for well-definedness,
but they are not for performance. In fact the non-short-circuit operations are simpler
to encode and reason about and so are preferred over short-circuit operations when
well-definedness is not an issue.

5.3 Java integer and character types
The Java primitive integer and character types may be used as is in JML, along with
all of the Java operations on those types, including casting among them. Depend-
ing on the arithmetic mode (§??), range checks may be performed on the results of
operations.

5.4 \bigint

weigl: Is there sort hierarchy? For example, can I quantify over all Java and JML ob-
jects?

The \bigint type is the set of mathematical integers (i.e., Z). Just as Java primitive
integral types are implicitly converted (see numeric promotion in the JLS, Ch. 5) to
int or long, all Java primitive integral types implicitly convert to \bigint where
needed. When \bigint values need to be auto-boxed into an Object, they are boxed
as java.math.BigInteger values; similarly when JML specifications are compiled
for runtime checking, \bigint values are represented as java.math.BigInteger
values. Within JML specifications, however, the \bigint type is treated as a primi-
tive type.

For example, == with two \bigint operands expresses equality of the represented
integers, not (Java) identity of BigInteger objects.

The familiar operators are defined on values of the \bigint type:

• unary: + - ~
• binary: +, -, *, /, \%
• bit operations: &, |, ^
• equality: == !=
• comparisons: <, <=, >, >=
• shifts: >>, <<

CHAPTER 5. JML TYPES 54

• casting: to and from primitive Java integral and character types

Also, these types can be used in quantified expressions and variables of these types
can be declared as ghost or model variables.

Casting to lower precision types results in truncation of higher-order bits; in safe java
arithmetic mode (§11) this may cause a verification warning.

Shift operations in Java can be surprising as the number of bits shifted is the right-
hand value modulo 32 or 64 (for int or long left hand values). Shifts of \bigint do
not limit the number of bits shifted. Also, for \bigints, all shifts are signed; there is
no >>> operator. The shift operations act like the numbers are infinite sequences of
bits, so -3 >> 1 is -1.

Like the shift operations, the bit operations on \bigint values act as operations on
infinite sequences of bits. For example, (-1)^(-2) == 1.

\bigint is the preferred type for writing specifications about integral values, instead
of range-limited Java integral types.

Current prover technology can take a long time to prove results about long (even 32-
or 64- bit sequences) and has difficulty mixing bit-operations with equivalent integral
operations. Caution is recommended in using bit and integral operations together.

5.5 Java double and float types
The Java double and float types may be used as is in JML, along with their Java
operations. However, extreme caution is needed: the Java operations on floating
point values correspond to the IEEE standard [3434] and do not correspond to common
intuition based on real numbers or logic.

Java floating point numbers include NaN (not-a-number) values, positive and neg-
ative infinity, positive and negative zero, along with the usual positive or negative
double- or float- precision values. For example, if either a or b is a NaN, then both
a == b and a != b are false, so a != b is not the same as !(a == b). Similarly
all comparisons among NaN values are false. Also, although 0.0 == -0.0 is true,
Double.valueOf(a).equals(Double.valueOf(-0.0)) is false. In a specifica-
tion expression, these operations have the same semantics as in Java.

To aid in working with floating-point numbers in specifications, JML defines the
model methods Double.same(double x, double y) and Float.same(float

x, float y). These define a logical equality among floating point values. That is,
they return true iff either both operands are NaN, both are positive infinity, both are
negative infinity, both are positive zero, both are negative zero, or they represent the
same non-zero, finite floating point number.

CHAPTER 5. JML TYPES 55

5.6 \real

The \real type is the set ofmathematical real numbers (i.e.,R). Just as the Java prim-
itive type float is implicitly converted to double, both float and double values
(and \bigint and integral Java primitive values) implicitly convert to \real where
needed. When \real values need to be auto-boxed into an Object, they are boxed as
???TODO values; similarly when JML specifications are compiled for runtime check-
ing, \real values are represented as ???TODO values. Within JML specifications,
however, the \real type is treated as a primitive type.

The familiar operators are defined on values of the \real type:

• unary: + - ~
• binary: + -, *, /, %
• equality: == !=
• comparisons: < <= > >=
• casting: to and from primitive Java integral and character types and \bigint

Also, \real can be used in quantified expressions and variables of type \real can
be declared as ghost or model variables.

Does casting ever result in NaN or infinities or negative zero?

5.7 \TYPE

The JML type \TYPE represents the type of Java expressions. Thus Java types are a
first-class type within JML; there are values for various Java types and one can write
expressions and reason about Java types. Values of \TYPE represent full generic types,
not erased types as in runtime Java.

• the \type syntax (§12.2012.20) is the means to write literals of type \TYPE. The ar-
gument of \type is a (syntactic) type name. For example, these are all different
values of type \TYPE:

– \type(int)

– \type(\bigint)

– \type(Object)

– \type(java.lang.Integer)

– \type(java.util.List<Integer>)

– \type(java.util.List<Boolean>)

• \TYPE values are not erased types. Thus
\type(java.util.List<Integer>) and
\type(java.util.List<Boolean>) are different values and
\type(java.util.List) is not well-defined.

• The \typeof function (§12.2112.21) takes a JML expression and returns the \TYPE
value corresponding to its dynamic type.

• \TYPE values can be compared with == and != as expected.

CHAPTER 5. JML TYPES 56

• The <: operator is the sub-type or equality operation.11 Note that this is subtype
on non-erased (JML) type values.

• t.typeargs() for a \TYPE value t is a \seq<\TYPE> giving the \TYPE values
of each of the type arguments of t.

• t.erasure() gives the java.lang.Class value that is the erasure of t. For
example \type(java.util.List<Integer>).erasure() equals java.util.List.class

• t.isArray() returns true iff t is an array type. \elemtype(t) (§11) returns
the element type of a t that is an array.

• \arrayOf(t) for a \TYPE value t returns a \TYPE value that is an array of t.
So then \elemtype(\arrayOf(t)) is t.

• Within a class body in which a type variable, say T, is in scope, one can write
\type(T), whose value is the \TYPEwith which T is instantiated. So in such a
case, for example, the comparison \type(T)== type(Integer) is true only
in the case that T is instantiated as an Integer. For example the asserted
expression in the following example verifies as true.

1 class Value<T> {
2 public T value;
3

4 Value(T t) { value = t; }
5

6 void check() {
7 //@ assert \typeof(value) <: \type(T);
8 }
9 }

5.8 \locset

The \locset type is the type of MU,DISCUSS: finite sets of heap locations, that
is, of left-hand-side-values that can occur on the left hand side of an assignment
statement. There are three kinds of heap locations:

1. references to static fields (ClassName.staticFieldName)

2. references to non-static fields in objects which are pairs (o,f) consisting of an
object reference o and a reference to a non-static field f.

3. reference to array indices (a,i) consisting of an object reference to an array
object and a integer index into the array i.

Location sets are used in particular as the target of accessible and assignable

clauses. (Weigl) This is rather misleading: a type is clause? It turnaround the first-
citizen character as it only focus on these two clauses. In earlier versions of JML these

1By analogy with other comparison operators, this operator ought to be <:=, with <: denoting a proper
subtype. But original JML included equality in <: and it would be highly backwards-incompatible to
change that definition.

CHAPTER 5. JML TYPES 57

clauses only took static lists of locations (cf. §11), but in order to reason about linked
data structures, first-class expressions representing sets of locations are needed. MU:
Actually, with datagroups these were already dynamic, and also "o.f" could mean some-
thing different depending on the value of o. What is new is that are first-class cizizens
and that they can be stored in entities.

Syntactic designations of memory locations, also called storerefs, are described in §11).
A location set can be constructed by

• \locset() - constructs an empty set

• \locset(<storeref> ...) - constructs a set containing the designated lo-
cations

• obj.* - describes the a location set contain all fields of the given object obj

• ary[*] and ary[n..m] - describes a location set where all either all index
position of ary are included, or in the second case only the index position from
n (inclusively) to m−1 (exclusively).

• (\infinite_union boundedvar; <guard>, <storeref>) - denotes an
infinite union of the location sets, i.e.,⋃

boundedvar∧guard

storeref (5.1)

These operations are associated with a \locset:

• \union(<expr> ...) - union of \locsets

• \intersection(<expr> ...) - intersection of \locsets

• \disjoint(<expr> ...) - true iff the arguments are pair-wise disjoint

• \subset(<expr>, <expr>) - true iff the first expression evaluates to a sub-
set of the evaluation of the second

• \setminus(<expr>,<expr>) - a \locset containing any elements that are
in the value of the first argument but not in the value of the second

Note that there can be an ambiguity when expressing a location (says x) which is
itself typed as a \locset: \locset(x,y), where x has type \locset and y’s type is
something else, represents a set of two locations; if you want the contents of x with
the location of y added in, you write \union(x, \locset(y)).

TODO: Need to resolve the above with the KeY team. What about \singleton and
\storeref and \cup. What about binary operators for union, intersection, disjoint
and setminus – e.g. | or +, ∗ or &, ##, −.

Conjectures (MU):

• \locset(x,y,...) := \union(\locset(x), \locset(y), ...)

CHAPTER 5. JML TYPES 58

• \locset(expr) evalues to the same set as expr if the expression is of type
\locset.

• otherwise: \locset(o.f), \locset(a[i]) is the singleton set that con-
tains the referenced heap location

• otherwise \locset(expr) is a syntax error.

• hence: locset(locset(x)) == x if not a syntax error.

Needs to be mentioned here or there: What is the meaning of storerefs in assignable
(accessible) clauses?

(Weigl) Should locset not a specialization of a set?

(Weigl): Location set, syntax constructs from KeY: \emptyset(), \storeref(...), (\infi-
nite_union <vars>; <guard>; <locset>), \locset (field, field,), \singleton(field), \union(
<locset>,<locset> ,<locset> ...) \setminus(<locset>,<locset>) \disjoint(<locset>,<locset>,
...) \subset(<locset>,<locset>)

New primitive datatype \locset with the following operators: (Reification of data-
groups / regions)

• \nothing only existing locations

• \everything all locations

• \empty no location at all: The empty set.

• \union(. . .) arbitrary arity

• \intersect(. . .) arbitrary arity

• \minus(·, ·)

• \subset(·, ·)

• \disjoint(. . .) pairwise disjointness

• (\collect ...; ...; ...) a variable binder in the sense of⋃
x|ϕ

locs(x) = (\collect T x; ϕ; locs(x)),

e.g., (\collect int i; 0<=i && 2*i<a.length; a[2*i]) is the
set of all locations in a[∗] with even index.

Often needed for things like(\collect Person p; set.contains(p); p.footprint).

• \new_elements_fresh(·) with the meaning

\new_elements_fresh(ls) := ∀l ∈ ls.l ∈ \old(ls)∨\fresh(ob ject(l))

. This is used to confine the extension of a location set in a postcondition to
objects which have been recently created. This is important to guarantee fram-
ing in dynamic frame specifications. This is sometimes called the swinging pivot

CHAPTER 5. JML TYPES 59

property. (Reasoning is usually: If ls1 and ls2 are disjoint before a method and
both ls1 is not touched and ls2 grows only into fresh objects, then ls1 and ls2
are still disjoint after the method.)

5.9 Mathematical sets: \set<T>
The type \set<T> is a built-in type of finite sets of items of type T. T may be a Java
reference type or a JML built-in type (but not a JML primitive type). Uniqueness of
elements is determined by the == operation. There are no null values of \set.

The \set type has the following operations defined.

Constructors:

• \set.<T>empty() — creates an empty set of type \set<T>

• \set.<T>of(T ... values) – creates a value of type \set<T> containing
the given elements. The argument is a varargs argument, so the elements may
be listed individually or the argument may be a (Java) array. If the type T can
be inferred from the arguments it need not be stated explicitly.

Do we want to define the non-Java syntax \seq(T ...) as a value constructor? – DRC:
Probably of is clear and concise enough to not have to use non-Java syntax

Operators

• == and != — equality and inequality. Two values of type \set<T> are equal
iff they contain the same elements, determined by the operation == on the
elements of type T.

• + — set union (binary operation): the result set contains all values of type T
that are in either of the operands

• * – set intersection (binary operation): the result set contains all values of type
T that are in both of the operands

AW: Maybe we should consider the binary operations. intersection "&", union "|"

• - – set difference (binary operation): the result set contains all values of type
T that are in the left operand but not in the right operand

• < and <= – proper and improper subset (binary operation): the result is true
iff all the elements of the left-hand operand are elements of the right-hand
operand

• [] – element membership , that is s[o] returns true iff the o (or type T) is an
element of s (of type \set<T>)

CHAPTER 5. JML TYPES 60

Functions All these functions have value semantics (they produce a result without
modifying the operands or anything else).

Do we use a special JML function syntax like \disjoint or a Java method syntax like
set.disjoint(...) – DRC: I suggest sticking with Java syntax

Do we have methods that duplicate the operations above so that we can use them as Java
method references in lambda operations? – DRC: Yes - simplifies implementation for
both ESC and RAC, while giving concise operator syntax as well

• s.size() – returns the number of elements in the set (type \bigint)

• s.has(T) – returns true iff the argument is in the set

• \set.<T>equals(\set<T>,\set<T>) – returns true iff the two arguments
have the same elements

• s.add(T...) – returns a new set with the given elements added (the argu-
ments may already be elements of the set)

• s.remove(T...) – returns a new set with the given elements removed (the
arguments need not be elements of the set)

• \set.<T>disjoint(\set<T> ... args)— the boolean result is true iff the
arguments are all pair-wise disjoint. There must be at least two arguments.

• \set.<T>subset(\set<T> s1, \set<T> s2) — the result is true iff the
first argument is a (possibly improper) subset of the second

Runtime equivalent The JML type \set<T> is mapped to
org.jmlspecs.lang.set or org.jmlspecs.lang.Set or org.jmlspecs.runtime.set or org.jmlspecs.runtime.Set
for runtime assertion checking.

5.10 Mathematical sequences: \seq<T>
The type \seq<T> is a built-in type of finite sequences of items of type T. T may
be a Java reference type or a JML built-in type (but not a JML primitive type). These
sequences have a non-negative, finite length. There are no null values of \seq.

The \seq type has the following operations defined.

Constructors:

• \seq.<T>empty() — creates an empty sequence of type \seq<T>

• \seq.<T>of(T ... values) – creates a value of type \seq<T> containing
the given elements in the given order. The argument is a varargs argument, so
the elements may be listed individually or the argument may be a (Java) array.
If the type T can be inferred from the arguments it need not be stated explicitly.

CHAPTER 5. JML TYPES 61

Operators

• == and != — equality and inequality. Two values of type \seq<T> are equal iff
they contain the same elements in the same order, determined by the operation
== on the elements of type T.

• [] – item value, that is s[i] is the i’th (0-based) element of sequence s, where
i has \bigint type, s has type \seq<T>, and the result is type T. The expres-
sion is well-defined but the result is undefined if the index is out of range.

• [i..j] – the subsequence from i through j. The argument may be any
\range expression, as described in §11. (range syntax is under discussion)

• +— sequence concatenation (binary operation): the result sequence is the con-
catenation of the values of the two operands (hence this operator + is not com-
mutative)

DRC: I’m in favor of the two [] operations above – we already have them in JML in other
contexts

DO we permit s[i]=v; as an update operation, equivalent to s = s.put(i,v); –
DRC: not sure – nice syntax but possibly confused with mutable operations on Java
arrays

Functions All these functions have value semantics (they produce a result without
modifying the operands or anything else). In the following s is a \seq<T>, i and j

are integers (type \bigint), and t is a value of type T.

• s.length() — the length of the sequence (a \bigint)

• \seq.<T>equals(\seq<T>,\seq<T>) – returns true iff the two arguments
have the same elements in the same order

• s.get(i) — the boolean result is the element (type T) of the sequence at po-
sition i (0-based, with 0 <= i < s.length.

• s.put(i,t) — returns a new sequence of type \seq<T> which is equal to
s except that position i in the sequence now contains the value t, where
0 <= i < s.length.

• s.has(t) — the boolean result is true iff t is an element of s.

• s.add(t) — returns a \seq that is s with t added onto the end

• s.prepend(t) — returns a \seq that is s with t added onto the begining

• s.append(ss) — returns a \seq that is s concatenated with ss

• s.sub(i,j) – a sequence that is a subsequence of s of length j-i contain-
ing the elements from position i up to but not including position j, where
0 <= i <= j <= s.length.

CHAPTER 5. JML TYPES 62

• s.head(i) – a sequence that is a subsequence of s containing the i elements
from position 0 up to but not including position i, where
0 <= i <= s.length.

• s.tail(i) – a sequence that is a subsequence of s containing the elements
from position i through the end of the sequence s, where
0 <= i <= s.length.

Runtime equivalent The JML type \seq<T> is mapped to
org.jmlspecs.lang.seq or org.jmlspecs.lang.Seq or org.jmlspecs.runtime.seq or org.jmlspecs.runtime.Seq
for runtime assertion checking.

5.11 String and \string
The built-in type \string is equivalent to \seq<char>, though that type cannot be
expressed as such because char is a Java primitive type. Nevertheless, \string has
all the operations that \seq has and the additions listed below. As a built-in primi-
tive value type, equality (==) of \string values means equality of the sequences of
characters.

Constructors:

• \string.of(String s) — constructs a \string value from a non-null in-
stance of a java.lang.String.

• \string.of(char... c) — constructs a \string value from a non-null ar-
ray of Java chars.

Operators:

• == and != — equality and inequality. Two values of type \string are equal iff
they contain the same characters in the same order.

• [] – item value, that is s[i] is the i’th (0-based) char of string s, where i has
\bigint type, s has type \seq<T>, and the result is type char. The expression
is well-defined but the result is undefined if the index is out of range.

• [i..j] – the substring from i through j. The argument may be any \range
expression, as described in §11. (range syntax is under discussion)

• + — string concatenation (binary operation)

Functions All the functions defined for \seq are defined for \string as well, with
these additions:

TODO - to discuss – more, string-like operations? indexOf ? Comparison operators?

CHAPTER 5. JML TYPES 63

Runtime equivalent The JML type \string is mapped to java.lang.String
for runtime assertion checking.

5.12 Mathematical maps: \map<T,U>
The type \map<T,V> is a built-in type of finite maps with keys of type T and values
of type V. T and V may be Java reference types or a JML built-in types (but not JML
primitive types). There are no null values of \map.

The \map type has the following operations defined.

Constructors:

• \map.<T,V>empty() — creates an empty map of type \map<T,V>

Operators

• == and != — equality and inequality. Two values of type \map<T,V> are equal
iff they contain the same set of keys and each key maps to the same value,
determined by the operation == on the elements of types T and V.

• [] – item value, that is s[t] is value in the map of type V corresponding to
the key t (of type T). The expression is well-defined but the result undefined if
the map has no association for the given key.

Functions All these functions have value semantics (they produce a result without
modifying the operands or anything else). In the following m is a \map<T,V>, t is a
value of type T, and v is a value of type V.

• m.keys() — a \set<T> containing exactly the keys of the map m (i.e. the
domain of the map)

• m.values() — a \set<V> containing exactly the values of the map m (i.e. the
range of the map). Note that the cardinality of the range may be less than that
of the domain because different keys may map to the same value.

• m.get(t) — the value of the map for the given key; the value is undefined if
t is not an element of m.keys(), but the expression is still well-defined.

• m.put(t,v) — returns a new map of type \map<T,V> that includes v as the
value for the key t, with the values for all keys not equal to t unchanged from
those in m.

• \map.<T,V>equals(\map<T,V>,\map<T,V>) – returns true iff the two val-
ues of type \map<T,V> contain the same set of keys and each key maps to the
same value, determined by the operation == on the elements of types T and V.

CHAPTER 5. JML TYPES 64

Runtime equivalent The JML type \map<T,V> is mapped to
org.jmlspecs.lang.map or org.jmlspecs.lang.Map or org.jmlspecs.runtime.map or org.jmlspecs.runtime.Map
for runtime assertion checking.

Chapter 6

JML Specifications for
Packages and Compilation
Units

There are no JML specifications at the package level. If there were, they would likely
be written in package-info.java file. The only JML specifications that are de-
fined at the file level, applying to all classes defined in the file, are model import
statements and model classes. Model classes are discussed in §11.

6.1 Model import statements
Java’s import statements allow class and (with static import statements) field names
to be used within a file without having to fully qualify them. The same import state-
ments apply to names in JML annotations. In addition, JML allows model import
statements. The effect of a JML model import statement is the same as a Java import
statement, except that the names imported by the JML statement are only visible
within JML annotations. If the model import statement is within a .jml file, the
imported names are visible only within annotations in the .jml file, and not outside
JML annotations and not in a corresponding .java file. These are import statements
that only affect name resolution within JML annotations and are ignored by Java.
They have the form

//@ model <Java import statement>

Note that the Java import statement ends with a semicolon.

Note that both

65

CHAPTER 6. JML SPECIFICATIONS FOR PACKAGES AND COMPILATION UNITS 66

model <Java import statement>;

and

/*@ model */<Java import statement>;

are invalid. The first is not within a JML comment and is illegal Java code. The sec-
ond is a normal Java import with a comment in front of it that would have no addi-
tional effect in JML, even if JML recognized it (tools should warn about this erroneous
use).

6.2 Default imports
The Java language stipulates that java.lang.* is automatically imported into ev-
ery Java compilation unit. Similarly in JML there is an automatic model import of
org.jmlspecs.lang.*. However, there are not yet any standard-defined con-
tents of the org.jmlspecs.lang package. Is this correct?

6.3 Issues with model import statements
As of this writing, no tools distinguish between Java import statements and JML
import statements. Such implementationsmay resolve names in Java code differently
than the Java compiler does. Consider two packages pa and pb each declaring a class
N.

1)

import pa.N;

//@ model import pb.N;

Correct behavior: In Java code N is pa.N; in JML code, N is ambiguous.
Non-conforming behavior: JML tools consider N in Java code to be ambiguous.

2)

import pa.N;

//@ model import pb.*;

Correct behavior: In Java code N is pa.N; in JML code, N is pa.N.
Non-conforming behavior: non-conforming JML tools will act correctly in this case.

3)

import pa.*;

//@ model import pb.N;

Correct behavior: In Java code N is pa.N; in JML code, N is pb.N.
Non-conforming behavior: JML tools consider N in Java code to be pb.N.

4)

CHAPTER 6. JML SPECIFICATIONS FOR PACKAGES AND COMPILATION UNITS 67

import pa.*;

//@ model import pb.*;

Correct behavior: In Java code N is pa.N; in JML code, N is ambiguous.
Non-conforming behavior: JML tools consider N in Java code to be ambiguous.

6.4 Model classes and interfaces
Just as a Java compilation unit (e.g., file) may contain multiple class definitions,
a compilation unit may also contain declarations of JML model classes and inter-
faces.

Amodel class declaration is very similar to a Java class declaration, with the following
differences:

• the declaration is entirely contained within a (single) JML annotation

• the declaration has a model modifier

• if the compilation unit contains Java class or interface declarations, the model
class or interface may not be the primary declaration (that is, the one with the
public modifier)

• JML constructswithin a JMLmodel declaration need not be contained in (nested)
JML annotation comments

• JML constructs within JML model classes or interfaces must not themselves be
declared model or ghost

Though secondary model classes and interfaces are allowed, it is generally more con-
venient to declare such classes as primary classes or simply as Java classes that are
included with a program when applying JML tools.

A JML model class or interfaces is only used in other JML specifications and not in
Java code. Hence there is no need to distinguish Java from JML constructs within the
model declaration. Consequently ghost and model modifiers on nested constructs
are not permitted

Chapter 7

Specifications for Java types
in JML

By types in this reference manual we mean classes, interfaces, enums, and records,
whether global, secondary, local, or anonymous. Some aspects of JML, such as the
allowed modifiers, will depend on the kind of type being specified.

Specifications at the type level serve three primary purposes: specifications that are
applied to all methods in the type, specifications that state properties of the data
structures in the type, and declarations that help with information hiding.

7.1 Modifiers for type declarations
Modifiers are placed just before the construct they modify. Example Java modifiers
are public and static. JML modifiers may be in their own annotation comments
or grouped with other modifiers, as shown in the following example code.

As discussed in §11, Java annotations from org.jmlspecs.annotation.* and placed
in Java code can be used instead of modifiers.

//@ pure

public class C {...}

public /*@ pure nullable_by_default */ class D {...}

68

CHAPTER 7. SPECIFICATIONS FOR JAVA TYPES IN JML 69

7.1.1 non_null_by_default, nullable_by_default,
@NonNullByDefault, @NullableByDefault

The non_null_by_default and nullable_by_defaultmodifiers or, equiv-
alently, the@NonNullByDefault and@NullableByDefault Java annotations,
specify the default nullity declaration within the class. Nullness is described in §11.
The default applies to all typenames in declarations and in expressions (e.g. cast ex-
pressions), and recursively to any nested or inner classes that do not have default
nullity declarations of their own.

These default nullity modifiers are not inherited by derived classes.

A class cannot bemodified by bothmodifiers at once. If a class has no nullitymodifier,
it uses the nullity modifier of the enclosing class; the default for a top-level class is
non_null_by_default. This top-level default may be altered by tools.

7.1.2 pure and @Pure
Specifying that a class is pure means that each method and nested class within the
class is specified as pure. The pure modifier on a class is not inherited by derived
classes, though pure modifiers on methods are.

There is no modifier to disable an enclosing pure specification.

7.1.3 @Options
The @Options modifier takes as argument either a String literal or an array of
String literals (with the syntax @Options(s1 ...)) with each literal being just like
a command-line argument, that is beginning with one or two hyphens and possibly
containing an = character with a value. These command-line options are applied to
the processing (e.g., ESC or RAC) of each method within the class. The options may
be augmented or disabled by corresponding @Options modifiers on nested meth-
ods or classes. In effect, the options that apply to a given class are the concatenation
of the options given for each enclosing class, from the outermost in.

An Options modifier is not inherited by derived classes.

Not all command-line options can be applied to an individual method or class.

7.2 invariant clause
Grammar:
<invariant-clause> ::= invariant <opt-name><opt-name> <predicate><predicate> ;

TODO

visibility modifiers?

CHAPTER 7. SPECIFICATIONS FOR JAVA TYPES IN JML 70

7.3 constraint clause
Grammar:
<constraint-clause> ::= constraint <opt-name><opt-name> <predicate><predicate> ;

Type information: The <predicate><predicate> has boolean type and is evaluated in the post-
state.

An constraint clause for a type is equivalent to an additional postcondition for
each non-constructor method of the type, as if an additional ensures clause (with
the predicate stated by the constraint clause) were added to every behavior of
each method in the type. like an ensures clause, an initially clause is evaluated
in the post-state.

Constraint clauses are used only by methods of the class in which the clause ap-
pears. The clause is not “inherited" by derived classes.

visibility modifiers?

7.4 initially clause
Grammar:
<initially-clause> ::= initially <opt-name><opt-name> <predicate><predicate> ;

Type information: The <predicate><predicate> has boolean type and is evaluated in the post-
state.

visibility modifiers?

An initially clause for a type is equivalent to an additional postcondition for
each constructor of the type, as if an additional ensures clause (with the predicate
stated by the initially clause) is added to every behavior of each constructor
in the type. like an ensures clause, an initially clause were evaluated in the
post-state.

Constraint clauses are used only by methods of the class in which the clause ap-
pears. The clause is not “inherited" by derived classes.

A typical use of a constraint clause is to require some condition about the fields
of a class to hold between the pre- and post-states of every method of the class. For
example,

constraint count >= \oldcount;

states that the field count never decreaseswhenmethods of the class are called.

7.5 ghost fields
Grammar:
TODO

CHAPTER 7. SPECIFICATIONS FOR JAVA TYPES IN JML 71

A ghost field declaration has the same syntax as a Java declaration except that it
contains the ghost modifier and is in a JML annotation. It declares a field that is
visible only in specifications. Runtime-assertion-checking compilers would compile
a ghost field like a normal Java field.

The type of a ghost field may be any JML or Java type.

7.6 model fields
Grammar:
TODO

A ghost field declaration has the same syntax as a Java declaration except that it
contains the model modifier and is in a JML annotation. However, a model field is
not a “real" field in the sense that it is not compiled into an executable representation
of its containing class, even for RAC compilation. Rather a model field designates
some abstract property of its containing class. The value of that property may be
completely uninterpreted, determined only by the constraints imposed by various
other specifications. Alternately, the value of a model field may be given directly by
a represents clause.

A model field is also implicitly a datagroup in that it designates a set of memory
locations (store-refs), given by various in and maps clauses.

7.7 represents clause
Grammar:
<represents-clause> ::= [static]<represents-keyword><represents-keyword> <ident><ident>

(= <jml-expression><jml-expression> ;
|\such_that <predicate><predicate> ;
)

<represents-keyword> ::= represents |represents_redundantly

Type information:

• The identifier named in the represents clause must be a model field declared
in or inherited by the class containing the represents clause.

• the <jml-expression><jml-expression> in the first form must have a type assignable to the type
of the given field (that is, ident == expr must be type-correct).

• the <predicate><predicate> in the second form must be a <jml-expression><jml-expression> with boolean
type

• A represents-clause can be declared as static. In a static represents clause, only
static elements can be referenced both in the left-hand side and the right-hand
side. In addition, a static represents clause must be declared in the type where
the model field on the left-hand side is declared.

• A non-static represents clausemust not have a static model field in its left-hand
side.

CHAPTER 7. SPECIFICATIONS FOR JAVA TYPES IN JML 72

The first form of a represents clause is called a functional abstraction. This form
defines the value of the given identifier in a visible state as the value of the expression
that follows the =. The represents clause for field f with expression e in class C is
equivalent to assuming

forall non_null C c; c.f == e_c

where ec is e with c replacing this.

The second form (with \such_that) is called a relational abstraction. This form
constrains the value of the identifier in a visible state to satisfy the given predi-
cate.

A represents clause does not take a visibility modifier. In essence, its visibility is that
of the field whose representation is is defining. However, there is no restriction on
the visibility of names on the right-hand-side. For example, the representation of a
public model field may be an expression containing private concrete fields.

Note that represents clauses can be recursive. That is, a represents clause may name
a field on its right hand side that is the same as the field being represented (named
on the left hand side). It is the specifier’s responsibility to make sure such definitions
are well-defined. But such recursive represents clauses can be useful when dealing
with recursive datatypes [5858].

7.8 model methods and model classes
TODO

7.9 static_initializer
Grammar:
<static-initializer-block> ::= <specification-cases><specification-cases> static <block><block>

<static-initializer> ::= <specification-cases><specification-cases> static_initializer

Type information: The <specification-cases><specification-cases> are type-checked in the static context of
the class.

7.9.1 Simple static initialization
The process of class initialization defined by Java has these steps, omitting the com-
plexities of locking.

• initialize all final static fields whose values are compile-time constant expres-
sions

• initialize all other fields to zero-equivalent values
• initialize all super classes, if not already initialized
• initialize the fields and execute the static initializer blocks in textual order

CHAPTER 7. SPECIFICATIONS FOR JAVA TYPES IN JML 73

Note that each static initializer block may have a specification, as if it were a method
with no receiver or parameters, with a pre-state just before the execution of the block
and a post-state just after. The contents of the initializer block must satisfy that
specification.

In addition, the class may have a JML static_initializer specification. This is
a sequence of specification cases immediately preceding the static_initializer
keyword. A class may have nomore than one such static_initializer; it may be
placed anywhere in the body of the method, as it is conceptually relocated to the end
of the class body. This specification summarizes the entire static initialization.

The predicate \isInitialized(C) for a class name C is false until the class ini-
tialization is complete, and then it is (forever after) true. It is implicitly false in the
pre-state of the static initializer and implicitly false in the post-state.

Need an example

7.9.2 Static initializers and static invariants
Static initialization is a one-time process. The values of (non-final) static fields can
change after initialization. The process of creating a new instance of a class starts
from the static state at the time of instance creation. What is known about the static
state after initialization is captured by the class’s static invariants.

The static invariants must be true in the post-state of the static initializer and they
must be maintained by any method that possibly assigns to any field that the invari-
ant depends on.

This is problematic if the static invariants depend on non-final fields of other classes

7.9.3 Default static initialization
Final static fields initialized by compile-time expressions do not change their values
after initialization and their values can be computed independently of the program.
For such fields, there is an obvious post-condition and an obvious static invariant:
that the field equals its compile-time value. JML defines this postcondition and in-
variant to be implicit; it need not (but may, redundantly) be stated explicitly.

A common case is that a class’s static fields are all final fields, initializedwith compile-
time constants. In this case both the specifications of the static initializer and the
static invariants are obvious: they are a conjunction of conjuncts stating that each
field equals its compile-time value.

However, final static fields not initialized by a compile-time expression do not always
have this benefit. In some cases, an inline computation can compute what initialized
value of the field, but in others, such as where some method is called to compute the
value, the initialized value may not be known by a static analyzer.

CHAPTER 7. SPECIFICATIONS FOR JAVA TYPES IN JML 74

If the field is not final then the intialized value and the value stated by an invariant
may well be different.

It is, however, an inconvenience to the user to need to write a static initializer, es-
pecially when the content seem obvious and repetitious. Therefore the default spec-
ification in the absence of a stastic_initializer is an inlining of the field ini-
tializations and static initializer blocks. If this is insufficient for reasoning about the
program, a static initializer is required. A static initializer is reaquired in any case if
the class’s static intializer blocks or static field intializers refer to any fields of other
classes that are not static final field initialized with compile-time constant expres-
sions.

7.9.4 Multi-class initialization
Static initialization is typically quite simple. It becomes complicated when classes re-
fer to each other during initialization. For example, cosider these interrelated classes:

1 class A {
2 static final int a = B.b;
3 static int aa = 42;
4 }
5 class B {
6 static final int b = A.aa;
7 }

If A begins initializationwhenB is not yet initialized then the following happens:

• A.a and A.aa are initialized to 0
• A.a begins intialization, but that requires B to be intialized
• B.b is initialized to 0
• B.b needs the value of A.aa; as A has already started initialization, that value
is returned as 0 (since A.aa is not final it is not initialized as a compile-time
constant expression).

• B has completed initialization
• A.a is intialized with the value 0, which is the current value of B.b
• A.aa is initialized to 42
• A’s initialization is complete

On the other hand, if B starts initialization before A, then

• B.b is initialized to 0
• B.b computes its initializer, starting the initialization of A
• A.a gets the value of 0 for B.b
• A.aa is initialized to 42, completing A’s initialization
• B.b gets the value of 42

So the value of B.b depends on the order of initialization, and it and the value of A.a
may not be what the user intended.

CHAPTER 7. SPECIFICATIONS FOR JAVA TYPES IN JML 75

Note that if B.bb were declared final, then B.bb would be initialized as a compile-
time constant expression and all three fields would have the value 42 nomatter which
class started initialization first.

There are three important lessons:

• Inadvertently omitting a final modifier can change the semantics

• Inadvertently or intentionally having classes access other not-fully initialized
classes (because of a dependency loop) an cause order-of-initialization depen-
dent behavior

• Dependency loops can be non-obvious: they may be mediated by chains of
method calls for example.

7.10 (instance) initializer
Grammar:
<instance-initializer> ::= <specification-cases><specification-cases> initializer

Instance initialization blocks and instance field initializers are executed as part of
constructors. In summary this sequence is followed for any constructor that begins.
perhaps implicitly, with a super call.

• Execute the super-class constructor
• Execute the instance field initializers and instance initialization blocks in tex-
tual order

• Execute the body of the constructor

Constructors that begin with a this call simp0ly delegate this process to a different
constructor.

The middle step of the above procedure is common to all constructors and is indepen-
dent of a constructor’s arguments; it can be summarized with a JML initializer
specification. The pre-state is the state just after the super-class constructor com-
pletes; it might, for example, express conditions on values of super-class fields. The
post-state of the initializer is the state just before the constructor body (after
the super call) begins. Thus the initializer specification summarizes the effect
of field initialers and non-static initializer blocks.

Only one non-staitc initializer specification is permitted per class. If it is present,
then it is used as a summary of step 2 of the three steps above. If it is absent, an inlin-
ing of the field and instance initializers is used instead. Essentially the specification
semantics of the constructor are the following:

• Assume the class’s static invariants

• Assume the constructor preconditions

• Assert the super-call preconditions

CHAPTER 7. SPECIFICATIONS FOR JAVA TYPES IN JML 76

• Assume the super-call postconditions

• Assert the initializer preconditions

• Assume the initializer postconditions

• Symbolically execute the remainder of the constructor body

• Assert the constructor’s postconditions

• Assert the class’s initially clauses

• Assert the class’s instance invariants

• Assert the class’s static invariants

Is the order of the last three correct?

Need examples

7.11 axiom
Grammar:
<axiom-clause> ::= axiom <opt-name><opt-name> <predicate><predicate> ;

Type information: The <predicate><predicate> has boolean type. An axiom must be a state-
independent formula.

Axioms always have public visibility.

Axioms are assumptions introduced into the proof. An axiommust be a state-independent
formula. Typically it might express a property of a mathematical type that is too dif-
ficult for an automated tool to prove.

As assumptions, axioms are a soundness risk for verification, unless they are sepa-
rately proved.

7.12 readable if clause and writable if clause
Grammar:
<readable-if-clause> ::= readable <ident><ident> if <jml-expression><jml-expression> ;
<writable-if-clause> ::= writable <ident><ident> if <jml-expression><jml-expression> ;

Type information:

• the <ident><ident>must name a field (possibly inherited) visible in the class containing
the clause

• the <jml-expression><jml-expression> must have boolean type
• Any name used on the right-hand-side must be visible in any context in which
the given <ident><ident> is visible.

CHAPTER 7. SPECIFICATIONS FOR JAVA TYPES IN JML 77

The readable-if clause states a condition that must be true at any program point
at which the given field is read.

The writable-if clause states a condition that must be true at any program point
at which the given field is written.

7.13 monitors_for clause
Grammar:
<monitors-for-clause> ::=

monitors_for <ident><ident> = <jml-expression><jml-expression> ... ;

Type information:

• the <ident><ident>must name a field (possibly inherited) visible in the class containing
the clause

• the <jml-expression><jml-expression>s must evaluate to a (possibly null) reference

A monitors-for-clause such as monitors_for f = e1, e2; specifies a relation-
ship between the field, f, and a set of objects, denoted by a specification expression
list e1, e2. The meaning of this declaration is that all of the (non-null) objects in
the list, in this example, the objects denoted by e1 and e2, must be locked at the
program point at which the given field (f in the example) is read or written.

Note that the righthand-side of the monitors-for-clause is not just a list of memory
locations, but is in fact a list of expressions, where each expression evaluates to a
reference to an object.

The monitors-for-clause is adapted from ESC/Java [5050] [6464].

Chapter 8

JML Method specifications

Method specifications describe the behavior of the method. JML is a modular spec-
ification methodology, with the Java method being the fundamental unit of modu-
larity. Method specifications constrain the implementation of a method, in that the
implementation must do what is stated by the specification; method specifications
constrain callers of methods in that they constrain the states in which the method
may be called and what may be assumed about the state when themethod completes
execution.

The specifications may under-specify a method. For example, the specifications may
simply say that the method always returns normally (that is, without throwing an
exception), but give no constraints on the value returned by the method. The degree
of precision needed will depend on the context.

8.1 Structure of JML method specifications
A JML method specification consists of a sequence of zero-or-more specification
cases; each case has an optional behavior keyword followed by a sequence of clauses.
The specification also contains JML modifiers.

<method-spec><method-spec> ::= (also)? <behavior-seq><behavior-seq>
(also implies_that <behavior-seq><behavior-seq>)?
(also for_example <behavior-seq><behavior-seq>)?

<behavior-seq><behavior-seq> ::= <behavior><behavior> (also <behavior><behavior>)*
<behavior><behavior> ::=

(<java-visibility><java-visibility> (code)? <behavior-id><behavior-id>)?
<clause-seq><clause-seq>

|<java-visibility><java-visibility> (code)?
<model-program><model-program>

<java-visibility><java-visibility> ::= (public | protected | private)?

78

CHAPTER 8. JML METHOD SPECIFICATIONS 79

<behavior-id><behavior-id> ::=
behavior | normal_behavior | exceptional_behavior

| behaviour | normal_behaviour | exceptional_behaviour

<clause-seq><clause-seq> ::= (<clause><clause> | <nested-clause><nested-clause>)*

<clause><clause> ::=
<requires-clause><requires-clause> §8.4.18.4.1

|<old-clause><old-clause> §8.5.58.5.5

|<writes-clause><writes-clause> §8.4.38.4.3

|<reads-clause><reads-clause> §8.5.18.5.1

|<callable-clause><callable-clause> §8.5.88.5.8

|<ensures-clause><ensures-clause> §8.4.28.4.2

|<signals-clause><signals-clause> §8.4.48.4.4

|<signals-only-clause><signals-only-clause> §8.4.58.4.5

|<diverges-clause><diverges-clause> §8.5.28.5.2

|<measured-by-clause><measured-by-clause> §8.5.38.5.3

|<when-clause><when-clause> §8.5.48.5.4

|<duration-clause><duration-clause> §8.5.68.5.6

|<working-space-clause><working-space-clause> §8.5.78.5.7

|<captures-clause><captures-clause> §8.5.98.5.9

|<method-program-block><method-program-block>

<nested-clause><nested-clause> ::= §8.1.28.1.2

{| (<clause-seq><clause-seq> (also <clause-seq><clause-seq>)*)? |}

Meta-parser rules:

• Each of the behavior keywords spelled behaviour is equivalent to the corre-
sponding keyword spelled behavior.

• Abehavior beginningwith normal_behaviormaynot contain a <signals-clause><signals-clause>
or a <signals-only-clause><signals-only-clause>. It implicitly contains the clauses

signals (Exception e) false; signals_only \nothing; .

• Abehavior beginningwith exceptional_behaviormaynot contain a <ensures-clause><ensures-clause>.
It implicitly contains the clause ensures false;.

• The also that begins a <method-spec><method-spec> is required if the method overrides a
method in some parent class or interface and is forbidden if the method does
not override any other method.

• Note that if there is a implies_that or for_example section in the <method-spec><method-spec>,
then the initial <behavior-seq><behavior-seq> is required.

• A <clause-seq><clause-seq> may be empty. This is a convenience when some or all clauses
might be conditionally excluded (cf. §4.1.54.1.5). A behaviorwith an empty <clause-seq><clause-seq>
is not the same as an absent specification.

• The grammar allows clauses to appear in any order, including after a <nested-clause-seq><nested-clause-seq>.
This permits factoring out common subsequences of clauses. However, note

CHAPTER 8. JML METHOD SPECIFICATIONS 80

that the scope of an old clause extends begins with the textual position of
that clause. Also, there is a preferred order for clauses (§8.1.38.1.3) that should be
used where possible to enhance readability.

Note that the vertical bars in the production for nested-clause are literals, not meta-
symbols.

8.1.1 Behaviors
The basic structure of JML method specifications is as a set of behaviors (or specifi-
cation cases. The order of <behavior><behavior>s within a <behavior-seq><behavior-seq> is immaterial.

Each behavior contains a sequence of clauses. The various kinds of clauses are de-
scribed in the subsequent sections of this chapter. Each kind of clause has a default
that applies if the clause is textually absent from the behavior.

For each behavior, if the method is called in a context in which the behavior’s pre-
condition (requires clause) is true, then the method must adhere to the constraints
specified by the remaining clauses of the behavior. Only some of the behaviors need
have preconditions that are true; unless at least one behavior has a true precondi-
tion, the method is being called in a context in which its behavior is undefined. For
example, a method’s specification may have two behaviors, one with a precondition
that states that the method’s argument is not null and the other behavior with a pre-
condition that states that the method’s argument is null. In this case, in any context,
one or the other behavior will be active. If however, the second behavior were not
specified, then it would be a violation to call the method in any context other than
those in which the first precondition, that the argument is not null, is true. More
than one behavior may be active (have its precondition true); every active behavior
must be obeyed by themethod independently. Where preconditions are not mutually
exclusive, care must be taken that the behaviors themselves are not contradictory, or
it will not be possible for any implementation to satisfy the combination of behav-
iors.

8.1.2 Nested specification clauses
Nested specification clauses are syntactic shorthand for an expanded equivalent in
which clauses are replicated. The nesting syntax simply allows common subsequences
of clauses to be expressed without repetition, where that improves clarity.

In particular, referring to the grammar above, a <behavior><behavior> whose <clause-seq><clause-seq> con-
tains a <nested-clause><nested-clause> is equivalent to a sequence of <behavior><behavior>s as follows:
if <nested-clause><nested-clause>A is a combination of n <clause-seq><clause-seq> as in
{| <clause-seq><clause-seq>S1 (also <clause-seq><clause-seq>Si)* |}
then
(<java-visibility><java-visibility>V (code)? W<behavior-id><behavior-id>X)? <clause><clause>∗ D<nested-clause><nested-clause>A<clause-seq><clause-seq>E
is equivalent to a sequence of n <behavior><behavior> constructions
(<java-visibility><java-visibility>V (code)? W<behavior-id><behavior-id>X)? <clause><clause>∗ D<clause-seq><clause-seq>S1<clause-seq><clause-seq>E
also

CHAPTER 8. JML METHOD SPECIFICATIONS 81

...
also
(<java-visibility><java-visibility>V (code)? W<behavior-id><behavior-id>X)? <clause><clause>∗ D<clause-seq><clause-seq>Sn<clause-seq><clause-seq>E

Is there a better way to describe this desugaring? and a better way to format it?

8.1.3 Ordering of clauses
The clauses are defined to be in the following groups:

• preconditions (requires, old clauses)
• read footprint (accessible clauses)
• frame conditions (assignable clauses)
• call conditions (callable clauses)
• model program (model program block)
• postconditions (ensures clauses)
• exceptional postconditions (signals, signals_only clauses)
• diverges conditions (diverges clauses)
• resource conditions (working_space, duration clauses)
• termination conditions (measured_by clauses)

Need to put in when, captures, recommends clauses

The clauses in a behavior can be sorted into a normal clause order by stably sorting
the sequence of clauses so that the order of groups of clauses given above is adhered
to, but not changing the order of clauses within a clause group.

Any method specification has the same semantics as a method specification with a
set of behaviors formed by first denesting the specification to remove any <nested-clause><nested-clause>s
and then (stably) sorting the clauses within each behavior. Good style suggests al-
ways writing clauses in normal order, in so far as any nesting being used permits.
Within a clause group, the order of clauses may well be important, as described in
the sections about those clause kinds.

8.1.4 Specification inheritance and the codemodifier
The behaviors that apply to a method are those that are textually associated with
the method (that is, they precede the method definition in the .java or .jml file)
and those that apply to methods overridden by the given method. In other words,
method specifications are inherited (with exceptions given below), as was described
in §3.33.3.

Specification inheritance has important consequences. A key one relates to precondi-
tions. The composite precondition for amethod is the disjunction of the preconditions
for each behavior, including the behaviors of overridden methods. Thus, just look-
ing at the behavior within a method, one might not immediately realize that other
behaviors are permitted for which the precondition is more accepting.

There are a few cases in which behaviors are not inherited:

CHAPTER 8. JML METHOD SPECIFICATIONS 82

• Since static methods are not overridden, their behaviors are also not inherited.

• Since privatemethods are not overridden, their behaviors are also not inherited.

• private behaviors are not inherited.

The codemodifier is unique in that it applies to method behaviors and nowhere else
in JML. It is specifically used to indicate that the behavior is not inherited. The code
modifier is allowed but not necessary if the behavior would not be inherited anyway.
The code modifier is not allowed if the method does not have a body; so it is not
used on an abstract method declaration, unless that method is marked default (in
Java) and has a body.

Note that if a class P has method m with a behavior that has the code modifier and
class D extends P but does not override m, then an invocation of m on an instance of
D executes P.m and is subject to the specification of P.m even though P.m has the
code modifier. If D declares a D.m overriding P.m, then the code modifier applies
and D.m is not subject to any part of P.m’s specification with the codemodifier; this
rule applies even if D.m does not declare any specification behaviors of its own—as it
does not inherit any behaviors, it would be given a default behavior.

Java allows a class to extend multiple interfaces. More than one interface might
declare behaviors for the same method. An implementation of that method inherits
the behaviors from all of its interfaces (recursively).

8.1.5 Visibility
The following discussion has some errors and needs fixing; also need to talk about
spec_public, spec_protected

Eachmethod specification behavior has a java-visibility (cf. the discussion in §11). Any
of the kinds of behavior keywords (behavior, normal_behavior,
exceptional_behavior) may be prefixed by a Java visibility keyword (public,
protected, private); the absence of a visibility keyword indicate package-level
visibility. A lightweight behavior (one without a behavior keyword) has the visibility
of its associated method.

The visibility of a behavior determines the names that may be referenced in the be-
havior. The general principle is that a client that has permission to see the behavior
must have permission to see the entities in the behavior. Thus

any name (of a type, method or field) in a method specification that is visible to a client must
also be visible to the client.
For example, a public behavior may contain only public names. A private behavior
may contain any name visible to a client that can see the private names; this would
include other private entities in the same or enclosing classes, any public name, any
protected name from super classes, and any package or protected name from other
classes in the same package. The visibility for protected and package behaviors is
more complex. A protected behavior is visible to any client in the same or subclasses;

CHAPTER 8. JML METHOD SPECIFICATIONS 83

Table 8.1: Visibility rules for method specification behaviors

Behaviors with this visibility may contain names that are visible in
the class because of this visibility

public public
protected public, protected-by-inheritance
package public, protected-by-package, package
private any

since the subclasses may be in a different package, the protected behavior may con-
tain other names with protected visibility only if they are visible in the behavior by
virtue of inheritance, and not if the are visible only because of being in the same
package. To be explicit, suppose we have class A, unrelated class B in the same pack-
age, class C a superclass of A in a different package, and class D derived from A but
in a different package, with identifiers A.a, B.b, and C.c each with protected visi-
bility. Only A.a and C.c are visible in class D; thus a protected behavior in class A,
which is visible to D, may contain A.a and C.c but not B.b. Similarly a behavior with
package visibility may only contain names that are visible by virtue of being in the
same package (and public names); names with protected visibility that are visible in
a class by virtue of inheritance are not necessarily visible to clients who can see the
package-visible behavior.

The root of the complexity is that protected visibility is not transitive, whereas the
other kinds of Java visibility are. Conceptually, protected visibility must be separated
into two kinds of visibility: protected-by-inheritance and protected-by-package. Each
of these is separately transitive. Then the visibility rules can be summarized in Table
8.18.1.

8.1.6 Grammar of method specifications
Fillin – remember lightwieght, behavior, normal_behavior, exceptional_behavior, exam-
ples, implies_that, visibility, model program behaviors, also, nested behaviors

Do we relax the ordering and the constraints on nesting that are in the current Ref-
Man

8.2 Method specifications as Annotations
At one time, there was an experimental implementation of method and other speci-
fications written as string arguments of Java annotations, for example,
@Requires("requires true;"). Such use of Java annotations is no longer de-
fined in JML. Only JML modifiers (which do not have arguments) have equivalent
Java annotations (e.g., pure and @Pure).

CHAPTER 8. JML METHOD SPECIFICATIONS 84

8.3 Modifiers for methods
TODO

8.4 Common JML method specification clauses
TODO

8.4.1 requires clause
Grammar:
<requires-clause> ::= requires <opt-name><opt-name> <jml-expression><jml-expression> ;

Type information: The <jml-expression><jml-expression> in a <requires-clause><requires-clause> must have boolean
type. Names in the <jml-expression><jml-expression> are resolved as if the expression appeared as the
first expression in the body of the method; that is, the formal and type parameters
of the method and anything visible in the body of the enclosing class are all in scope.
Also. any name declared in an <old-clause><old-clause>(§8.5.58.5.5) prior to the <requires-clause><requires-clause> in
the same specification case is also in scope and hides any other names.

A requires clause states a precondition for a method. That is, the given predicate
must be true at the point of the associated method is called and may be assumed to
be true in the body of the method.

There may be more than one requires clause in a specification case. The order of
requires clauses within a specification case is significant in the same way that the
order of terms in a short-circuit boolean expression is significant: earlier <requires-clause><requires-clause>
expressions may state conditions that enable later ones to be well-defined.

The default requires clause is requires true;, which puts no requirements on the
caller of the method.

8.4.2 ensures clause
Grammar:
<ensures-clause> ::= ensures <opt-name><opt-name> <jml-expression><jml-expression> ;

Type information: The <jml-expression><jml-expression> in a <ensures-clause><ensures-clause> must have boolean

type. Names in the <jml-expression><jml-expression> are resolved as if the expression appeared as the
first expression in the body of the method; that is, the formal and type parameters
of the method and anything visible in the body of the enclosing class are all in scope.
Also, any name declared in any <old-clause><old-clause> in the same specification case is also
in scope and hides any other names. Ensures clauses may also use the \result

expression (cf. §12.1212.12).

An ensures clause states a postcondition for a method. That is, the given predicate
must be true just after any return statement in the method body and may be as-
sumed by the caller at the call point. Note that the semantics is that *if the method

CHAPTER 8. JML METHOD SPECIFICATIONS 85

returns normally, then the postconditions are true* (if the program is verified). The
converse, namely, *if the postcondition is true then themethod terminates normally*,
is not necessarily true.

There may be more than one ensures clause in a specification case. The order of
ensures clauses in a specification case is significant in the same way that the order
of terms in a short-circuit boolean expression is significant: earlier <ensures-clause><ensures-clause>
expressions may state conditions that enable later ones to be well-defined. In ad-
dition, all of the preconditions in the same specification case can be assumed to be
true.

The default ensures clause is ensures true;, which puts no requirements on the
body of the method.

8.4.3 assignable clause
Grammar:
TODO

8.4.4 signals clause
Grammar:

TODO

8.4.5 signals_only clause
Grammar:
<signals-only-clause> ::=

signals_only <opt-name><opt-name> [\nothing |<name><name> (, <name><name>)*
];
<name> ::= <ident><ident> (. <ident><ident>)*

Type information: The possibly-qualified names in the clause must denote (resolve
to) Java types derived from java.lang.Exception. The names are resolved just
like any other type name in a Java program, using names in scope at the point of the
method declaration.

A <signals-only-clause><signals-only-clause> specifies that under the preconditions of the specification
case that only the listed Java Exceptions may be thrown. That is, if the method ter-
minates with an exception it must be or be derived from one of the listed exceptions.
The token \nothing denotes an empty list (no exceptions may be thrown). In con-
trast to the Java throws list, if any kind of RuntimeException is to be permitted by
the JML specification, it must be explicitly listed.

There is no point to listing exceptions in a <signals-only-clause><signals-only-clause> that are not (impli-
ictly) in the Java throws clause, as the Java compiler will complain about them. On
the other hand, the <signals-only-clause><signals-only-clause> allows specifying fewer exceptions or none

CHAPTER 8. JML METHOD SPECIFICATIONS 86

at all for a given specification case. For example, a method may be expected to ter-
minate normally (i.e. signals_only \nothing; under one set of preconditions,
while terminating with an exception under other preconditions.

The default <signals-only-clause><signals-only-clause> lists all the exceptions that are in the Java method
declaration’s throws clause plus RuntimeException.

Note that the exceptions listed in a <signals-only-clause><signals-only-clause> have an effect on the use of
allow and forbid annotations (§??).

8.5 Advanced JMLmethod specification clauses
TODO

8.5.1 accessible clause
Grammar:

TODO

8.5.2 diverges clause
Grammar:
<diverges-clause> ::= diverges <opt-name><opt-name> <jml-expression><jml-expression> ;

Type information: The <jml-expression><jml-expression> in a <diverges-clause><diverges-clause> must have boolean
type. Names in the <jml-expression><jml-expression> are resolved as if the expression appeared as the
first expression in the body of the method; that is, the formal and type parameters
of the method and anything visible in the body of the enclosing class are all in scope.
Also. any name declared in an <old-clause><old-clause>(§8.5.58.5.5) in the same specification case is
also in scope and hides any other names. The <jml-expression><jml-expression> is evaluated in the
method’s pre-state.

When a diverges clause is omitted in a specification case, a default diverges clause
is used; the default diverges condition is false. Thus by default, specification cases
give total correctness specifications [2424]. Explicitly writing a diverges clause allows
one to obtain a partial correctness specification [3131].

As an example of the use of diverges, consider the abort method in the following class.
(This example is simplified from the specification of Java’s System.exit method.
This specification says that the method can always be called (the implicit precondi-
tion is true), is always allowed to not return to the caller (i.e., diverge), and may never
return normally, and may never throw an exception. Thus the only thing the method
can legally do, aside from causing a JVM error, is to not return to its caller.

1 package org.jmlspecs.samples.jmlrefman;
2 public abstract class Diverges {
3

CHAPTER 8. JML METHOD SPECIFICATIONS 87

4 /*@ public behavior
5 @ diverges true;
6 @ assignable \nothing;
7 @ ensures false;
8 @ signals (Exception) false;
9 @*/
10 public static void abort();
11 }

The diverges clause is useful to specify things like methods that are supposed to abort
the programwhen certain conditions occur, although such behavior is not really good
practice in Java. In general, it is most useful for examples like the one given above,
when you want to say when a method cannot return to its caller.

8.5.3 measured_by clause
Grammar:

TODO

8.5.4 when clause
Grammar:
<when-clause> ::= <when-keyword><when-keyword> <opt-name><opt-name> <jml-expression><jml-expression> ;
<when-keyword> ::= when |when_redundantly

Type information: The <jml-expression><jml-expression> in a <when-clause><when-clause>must have boolean type.
Names in the <jml-expression><jml-expression> are resolved as if the expression appeared as the first
expression in the body of the method; that is, the formal and type parameters of the
method and anything visible in the body of the enclosing class are all in scope. Also,
any name declared in an <old-clause><old-clause>(§8.5.58.5.5) in the same specification case is also in
scope and hides any other names. The <jml-expression><jml-expression> is evaluated in the method’s
pre-state.

The when clause allows concurrency aspects of a method or constructor to be spec-
ified [5151, 6464]. In a program with concurrent executions, a caller of a method may be
delayed, for example, by a locking condition. What is checked is that the method
does not proceed to its commit point, which is the start of execution of a statement
with the label commit, until the given predicate is true.

When a when clause is omitted in a specification case, a default when clause is used,
in which the predicate is true.

See [6464] for more about the when clause.

CHAPTER 8. JML METHOD SPECIFICATIONS 88

8.5.5 old clause
Grammar:

TODO

Any declaration in <old-clause><old-clause> clauses must precede any uses of the declared vari-
ables.

8.5.6 duration clause
Grammar:
<duration-clause> ::= <duration-keyword><duration-keyword> <opt-name><opt-name> <expression><expression>

[if <predicate><predicate>] ;
<duration-keyword> ::= duration |duration_redundantly

Type information: The <expression><expression> in the duration clause has type \bigint; the
optional <predicate><predicate> has boolean type.

A duration clause is used to specify the maximum (i.e., worst case) time needed to
process a method call in a particular specification case. This is adapted from the work
of Krone, Ogden, and Sitaraman on RESOLVE [3939].

The expression is to be understood in units of the JVM instruction that takes the
least time to execute, which may be thought of as the JVM’s cycle time. The time it
takes the JVM to execute such an instruction can bemultiplied by the number of such
cycles to arrive at the clock time needed to execute the method in the given specifi-
cation case. This time should also be understood as not counting garbage collection
time.

The expression in a duration clause is evaluated in the post state and thus may use
\old and other JML operators appropriate for postconditions.

In any specification case, an omitted duration clause means the same as a duration
clause giving an unreasonably large amount of time.

See §12.3312.33 for information about the \duration expression that can be used in the
duration clause to specify the duration of other methods.

8.5.7 working_space clause
Grammar:
<working-space-clause> ::= <working-space-keyword><working-space-keyword> <opt-name><opt-name> <expression><expression>

[if <expression><expression>] ;
<working-space-keyword> ::= working_space |working_space_redundantly

A <working-space-clause><working-space-clause> can be used to specify the maximum amount of heap space
used by a method, over and above that used by its callers. The clause applies only to

CHAPTER 8. JML METHOD SPECIFICATIONS 89

the particular specification case it is in, of course. This is adapted from the work of
Krone, Ogden, and Sitaraman on RESOLVE [3939].

The expression in a working space clause must have type \bigint. It is to be under-
stood in units of bytes. It provides a guarantee of the maximum amount of additional
space used by the call.

The expression is evaluated in the post-state and thus may use \old and other JML
operators appropriate for postconditions. This is because it is considered to be eval-
uated in the post-state. In some cases this space may depend on the \result, ex-
ceptions thrown (\exception), or other post-state values.

An omitted working space clause makes no guarantees of the amount of space used;
it is equivalent to a clause specifying an unreasonably large number of bytes.

See §12.3412.34, for information about the \working_space expression that can be used
to describe the working space needed by a method call. See §12.3512.35, for information
about the \space expression that can be used to describe the heap space occupied
by an object.

8.5.8 callable clause
Grammar:
<callable-clause> ::= callable <opt-name><opt-name>

\nothing
|<method-signature><method-signature> (, <method-signature><method-signature>)+ ;

<method-signature> ::= [<type-name><type-name> .]<java-identifier><java-identifier>

[(<type-name><type-name> ...)]

Type information: Each <method-signature><method-signature>must name a uniquemethod. If no <type-name><type-name>
is given, the <identifier><identifier>must name amethod in the enclosing class; otherwise it must
name amethod in the named type. If the method name is not unique in its class, then
the types of its arguments must be listed in exact correspondence to the declaration
of the method.

What about generic methods?

The callable clause is a postcondition clause. It states that all methods called within
its body (including any called by method calls in its body, recursively) are contained
in the the list of methods in the clause. The term \nothing denotes an empty list of
method signatures.

8.5.9 captures clause
Grammar:
<captures-clause> ::= <captures-keyword><captures-keyword> <opt-name><opt-name> <expression><expression>

... ;
<captures-keyword> ::= captures |captures_redundantly

CHAPTER 8. JML METHOD SPECIFICATIONS 90

8.6 Model Programs (model_program clause)

8.6.1 Structure and purpose of model programs

8.6.2 extract clause
TODO

8.6.3 choose clause
TODO

8.6.4 choose_if clause
TODO

8.6.5 or clause
TODO

8.6.6 returns clause
TODO

8.6.7 continues clause
TODO

8.6.8 breaks clause
TODO

8.7 Modifiers for method specifications

8.7.1 pure and @Pure
TBD

8.7.2 non_null, nullable, @NonNull, and @Nullable
TBD

8.7.3 model and @Model
TBD

CHAPTER 8. JML METHOD SPECIFICATIONS 91

8.7.4 spec_public, spec_protected,
@SpecPublic, and @SpecProtected

These modifiers apply only to methods declared in Java code, and not to methods
declared in JML, such as model methods.

TBD

8.7.5 helper and @Helper
TBD

8.7.6 function and @Function
– changed to heap_free TBD

8.7.7 query, secret, @Query, and @Secret
TBD

8.7.8 code_java_math, spec_java_math,
code_bigint_math, spec_bigint_math,
code_safe_math, spec_safe_math,
@CodeJavaMath, @CodeSafeMath, @CodeBigintMath,
@SpecJavaMath,@SpecSafeMath,@SpecBigintMath

TBD

8.7.9 skip_esc, skip_rac, @SkipEsc, and SkipRac
These modifiers apply only to methods with bodies.

When these modifiers are applied to a method or constructor, static checking (re-
spectively, runtime checking) is not performed on that method. In the case of RAC,
the method will be compiled normally, without inserted checks. These modifiers are
a convenient way to exclude a method from being processed without needing to re-
member to use the correct command-line arguments.

8.7.10 @Options

This is perhaps too tool-specific

This Java annotation applies to class or method declarations. It is available only as a
Java annotation (not as a JML modifier).

The annotation takes either a string literal or a -enclosed list of string literals as
its argument. The literals are interpreted as individual command-line arguments,
optionally with a = and a value, that set options used just for processing the class or

CHAPTER 8. JML METHOD SPECIFICATIONS 92

method declaration that the annotation modifies. Not all command-line arguments
are applicable to individual classes or methods; those that do not apply are silently
ignored.

This is useful when there is not a built-inmodifier for a particular option. For example,
one could write

1 public void TestOption {
2 @org.jmlspecs.annotation.Options({"-progress","-timeout=1"})
3 public void m() {
4 //@ assert false;
5 }
6 }

Here method m is processed with the given timeout and verboseness level, wdespite
the settings used elsewhere. In the first case, the strings are enclosed in braces,
while in the second case, the single string does not need enclosing braces. Note
that the prefix org.jmlspecs.annotation. may be omitted if the appropriate
import is used (e.g., import org.jmlspecs.annotation.Options; or import
org.jmlspecs.annotation.*;. The @Options annotation is in Java code, so a
library containing org.jmlspecs.annotation must be on the classpath when a
class using Option is compiled or executed.

8.7.11 extract and @Extract
This modifier applies only to methods with bodies.

TBD

8.8 TODO Somewhere
<:: token

lots more backslash tokens

Chapter 9

Field Specifications

Fields may have various modifiers, each of which states a restriction on how the
field may be used. Fields may be part of data groups, which allow specifying frame
conditions on fields that may not be visible because of the Java visibility rules. Also,
a specification may introduce ghost or model fields that are used in the specification
but are not present in the Java program.

9.1 Field and Variable Modifiers
The modifiers permitted on a field, variable, or formal parameter declaration are
shown in Table 9.19.1.

9.1.1 non_null and nullable (@NonNull, @Nullable) Discuss @Non-
Null TestJava a,
b;
Need to discuss
relationship
with JSR308

The non_null and nullable modifiers, and equivalent @NonNull and @Nullable an-
notations, specify whether or not a field, variable, or parameter may hold a null value.
The modifiers are valid only when the type of the modified construct is either a ref-
erence or array type, not a primitive type.

9.1.2 spec_public and spec_protected (@SpecPublic,@SpecPro-
tected)

These modifiers are used to change the visibility of a Java field when viewed from
a JML construct. A construct labeled spec_public has public visibility in a
JML specification, even if the Java visibility is less than public; similarly, a construct
labeled spec_protected has protected visibility in a JML specification, even
if the Java visibility is less than protected. Section 11 contains a detailed discussion of
the effect of information hiding using Java visibility on JML specifications.

Listing 9.1: Use of spec_public

93

CHAPTER 9. FIELD SPECIFICATIONS 94

Table 9.1: Modifiers allowed on field, variable and parameter declarations

Modifier Where Purpose
non_null field, var, param the variable may not be null (§9.1.19.1.1)
nullable field, var, param the variable may be null
spec_public field visibility is public in specs
spec_protected field visibility is protected in specs
model field representation field
ghost field, var specification only field
uninitialized var TBD
instance field not static
monitored field guarded by a lock
secret field, var, param hidden field
peer field, param TBD
rep field, param TBD
readonly field, param TBD

1 private /*@ spec_public */ int value;
2

3 //@ ensures value == i;
4 public setValue(int i) {
5 value = i;
6 }

For example, Listing 9.19.1 shows a simple setter method that assigns its argument to
a private field named value. The visibility rules require that the specifications of a
public method (setValue) may reference only public entities. In particular, it may
not mention value, since value is private. The solution is to declare, in JML, that
value is spec_public, as shown in the Listing.

9.1.3 ghost and @Ghost

TODO – see later section

9.1.4 model and @Model

TODO – see later section

9.1.5 uninitialized and @Uninitialized

TODO

CHAPTER 9. FIELD SPECIFICATIONS 95

9.1.6 instance and @Instance

The JML instance modifier is the opposite of the Java static modifier; that is, an
instance entity is a member of an object instance of a class (with a different entity
for each object instance), whereas a static entity is a member of the class (and is
the same entity for all object instances of that class).

It does no harm to declare a non-static JML field as instance, but the only time
it is necessary is in an interface, as fields are by default static in an interface. It is
common, however, to declare some instance model fields in an interface that are used
by specifications in the interface and inherited by derived classes.

Obviously, it is a type error to declare a field both instance and static.

1 public interface MyCollection {
2 //@ model instance int size; // a public instance JML field
3 final int MAX = 100; // a public static Java field
4 }

9.1.7 monitored and @Monitored

9.1.8 query, secret and @Query, @Secret
TODO

9.1.9 peer, rep, readonly (@Peer, @Rep, @Readonly) Check readonly
vs. read_only,
Readonly vs.
ReadOnly

TODO

9.2 Ghost fields
Ghost fields are in all respects like Java fields, except that they are not compiled into
the Java program (because the declarations are in JML, which are Java comments).
However they are compiled into the output programs for runtime-assertion checking.
They can also be reasoned about in static checking just like any Java field.

Within a program, ghost fields are assigned to in set statements (§11).

• a JML field must be one of either ghost or model, and not both

• a ghost field in an interface must be static

TODO - a small example?

9.3 Model fields
TODO

• a JML field must be one of either ghost or model, and not both

CHAPTER 9. FIELD SPECIFICATIONS 96

• a non-final model field may not have an initializer (the value of a model field
is constrained by specifications, including represents clauses — §11.

9.4 Datagroups: in and maps clauses
TODO

9.5 maps clause
<maps-clause> ::= maps <storeref><storeref> \into <identifier><identifier> ... ;

Type information:

• Each <identifier><identifier> must be a datagroup (including model fields).

The maps clause states that given <storeref><storeref> is a member of each of the given data-
groups.

Allow a list of storerefs?

Allow null dereferences in the storerefs

Chapter 10

Default specifications and
specification inference

A default specification for a Java method is assumed wherever (a) there is a library
method with no source code or specification file, (b) a method with Java source code
but not explicit specifications, or (c) an implicit (compiler constructed) method. This
chapter defines the specifications that JML assumes in these cases.

10.1 Class specifications
A class without specifications does not add any defaults – no modifiers or spec-
ification clauses. However, the specifications of static and instance initialization
are essentially inferred by inlining the class as described in the following subsec-
tions.

Default visibility of clauses

10.1.1 Static initialization
Write this

10.1.2 Instance initialization
Write this

10.2 Field specifications
A field withoutmodifiers or specification clauses does not by default have any.

97

CHAPTER 10. DEFAULT SPECIFICATIONS AND SPECIFICATION INFERENCE 98

10.3 Non-overridden methods
A method that does not override any methods of parent classes and does not specify
any behavior and is not marked pure has this default behavior:

1 requires true;
2 accessible \everything;
3 assignable \everything;
4 captures \everything;
5 callable \everything;
6 ensures true;
7 signals (Exception e) true;
8 signals_only RuntimeException + contents of method’s throws declaration;
9 diverges true;
10 when true;
11 measured_by <very large number>;
12 duration <very large number>;
13 working_space <very large number>

In addition, the method is by default volatile

If the method has a pure modifier then the default is

1 requires true;
2 accessible \everything;
3 assignable \nothing;
4 captures \everything;
5 callable \everything;
6 ensures true;
7 signals (Exception e) true;
8 signals_only RuntimeException + contents of method’s throws declaration;
9 diverges true;
10 when true;
11 measured_by <very large number>;
12 duration <very large number>;
13 working_space <very large number>

In addition, the method is by default not volatile

The visibility of these default behaviors is the same as the method itself.

Such behaviors are about as conservative as it is possible to be, with just the exception
that the specification only allows a java.lang.RuntimeException or any checked
excption in the method’s throws clause to be thrown, and not any other kind of
unchecked Throwable, such as a java.lang.Error (including java.lang.AssertionError.
The rationale for this restriction is that JML make no guarantees about a program’s
behavior (whatever verification was successfully performed) if an Error is thrown
— most Error exceptions are program faults (e.g. out of memory or stack overflow)
from which it is difficult to perform meaningful recovery action These default be-
haviors are sound (baring program Errors) but are too general to be useful. Any
method implementation at all can be verified against these postconditions, but no

CHAPTER 10. DEFAULT SPECIFICATIONS AND SPECIFICATION INFERENCE 99

method that called such a method (and relied on its behavior) could be verified to do
anything. Consequently, users are advised to provide actual specifications for any
method that is called.

Tools may help by (a) warning about methods without specifications or (b) inferring
better specifications (§??) or (c) providing options that enable more useful if unsound
defaults.

10.4 Overriding methods
A method that overrides a method from a parent class or interface inherits all the
behaviors (recursively) from its superclasses and interfaces. There will be at least the
default behavior of the top-most method in the overriding hierarchy. If the method
does not have any specification clauses of its own, it does not add any behaviors
to those it inherits. (If it has behaviors of its own, those are concatenated with the
inherited behaviors.)

In addition, an overriding method inherits the pure modifier if any method it over-
rides is marked pure. It may also declare itself pure even if its parents do not.

Amethodmay add its ownmodifiers (e.g., spec_public, spec_protected, helper)
independently of its inheriting behaviors.

10.5 Library methods
To ensures soundness, the defaults for library methods without either source code or
explicit specifications are these:

1 requires true;
2 accessible \everything;
3 assignable \everything;
4 captures \everything;
5 callable \everything;
6 ensures true;
7 signals (Exception e) true;
8 signals_only RuntimeException + contents of method’s throws declaration;
9 diverges true;
10 when true;
11 measured_by <very large number>;
12 duration <very large number>;
13 working_space <very large number>

In addition, any formal parameters of reference type are non_null, but any return
value of reference type is nullable.

These conservative default behaviors are somewhat onerous for library methods.
Many of these methods are pure or at least have no side effects outside their own

CHAPTER 10. DEFAULT SPECIFICATIONS AND SPECIFICATION INFERENCE 100

receiver. The user will likely need to provide some specifications for the library meth-
ods that are being used. Again, tools may be able to provide some help here, as well
as efforts to specify more of the Java standard library.

10.6 Object()
As the java.lang.Object class has no superclass, its default constructor has a
simple default specification:

1 requires true;
2 accessible \nothing;
3 assignable \nothing;
4 captures \nothing;
5 callable \nothing;
6 ensures true;
7 signals (Exception e) false;
8 signals_only \nothing;
9 diverges false;
10 when true;
11 measured_by 0;
12 duration <very large number>;
13 working_space <very large number>

10.7 Constructors
Constructors have a method specification like non-constructor methods, but with a
few differences and additional considerations.

When a constructor is called, the following sequence of operations takes place:

• Static initialization of the class happens, if it has not already occurred

• All instance fields are initialized to zero-equivalent values

• The parent class constructor is called (per the explicit or implicit super call)

• The instance fields are initialized and the instance initialization blocks are ex-
ecuted in textual order

• The body of the constructor is executed.

The pre-state of the constructor specification is the state after static initialization but
before any instance initialization is started. Thus any instance fields have undefined
values and the object being constructed is not yet allocated.

Accordingly, this may not be used in the preconditions or the frame conditions (or
any specification clause that is evaluated in the pre-state). Because the object being
constructed is not part of the pre-state, any instance fields that are initialized by the
constructor need not be in the frame conditions. Indeed they may not be because
that would require an implicit reference to this.

CHAPTER 10. DEFAULT SPECIFICATIONS AND SPECIFICATION INFERENCE 101

A constructor marked pure or assigns \nothing; may initialize the object’s in-
stance fields and may assign only to those fields.

It is (unfortunately) the case in Java that a parent class constructor can downcast
this to get access to a derived class object before it is initialized. The result is that
in an example like the following the asserted expression is true.

1 class P {
2 public P() {
3 //@ assert (this instanceof Con) ==> ((Con)this).f == 0;
4 }
5 }
6

7 public class Con extends P {
8 public int f = 1;
9 {
10 f = 2;
11 }
12 }

10.8 Default constructors
A default constructor is a zero-argument constructor generated by the compiler when
a user writes no constructors. Its implementation (per Java) is just to call the zero-
argument constructor of its parent class.

10.8.1 Specification in .jml file
If there is a .jml file containing the specification of the parent class of the constructor
in question, then the specification of the default constructor can be put in that .jml
file, whether or not there is a corresponding .java file.

1 // (portion of) .jml file
2 class A {
3 //@ pure
4 public A() {}
5 }

10.8.2 Specification in .java file
If there is a source .java file and no .jml file, then a specification of the default con-
structor can be put in the .java file along with an implementation of the default con-
structor:

1 // (portion of) .java file
2 class A {
3 //@ pure
4 public A() {}
5 }

CHAPTER 10. DEFAULT SPECIFICATIONS AND SPECIFICATION INFERENCE 102

10.8.3 Default specification
If there is no specification of the default constructor in either a .java or a .jml file
for the class in question, then a default specification is assumed for the default con-
structor. That default specification is a copy of the specification cases of the parent
class’s default constructor’s specification, omitting any specification cases that are
not visible in the child class.

For example, the specification of the constructor Object() is just

1 /*@ public normal_behavior
2 @ assignable \nothing;
3 @ reads \nothing;
4 @*/
5 public /*@ pure @*/ Object();

Any class that is derived directly from java.lang.Object and has a default con-
structor would have this same specification for that default constructor, unless the
user supplied a different one.

10.9 Enums
Write this

10.10 Records
A Java record declaration is a class declaration with much of the body of the class
automatically generated. For example, the declaration
record Rectangle(double length, double width)

creates a class with

• One private field for each formal argument

• A public constructor with a signature corresponding to the declaration

• public getter methods for each field

• default equals, hashCode and toString methods

The class is immutable.

The default specifications for such a class are these:

• The class has the modification immutable

• Each generated private field has the modifier spec_public

• The constructor has a public normal_behavior specification case with a
simple postcondition in which each field is set to the value of the corresponding
formal argument. The constructor has the pure modifier.

CHAPTER 10. DEFAULT SPECIFICATIONS AND SPECIFICATION INFERENCE 103

• Each getter function has a public normal_behavior specification case with
the simple postcondition that the result of the method is the value of the cor-
responding field.

• The generated equalsmethod has a public behavior specification case in
which the ensures postcondition calls == to compare each primitive value and
.equals() for reference values. The record’s .equals() method is pure if
all of the component types have pure .equals() methods. other clauses

• The generated hashCodemethod has a public behaviorwith an ensures true;

postcondition. other clauses

• The generated toStringmethod has a public behavior specification case
inwhich the ensures postcondition is ensures true;.The record’s .hashCode()
method is pure if all of the component types have pure .hashCode()meth-
ods. The record’s .toString() method is pure if all of the component types
have pure .toString() methods.

other clauses

Thus for an example declaration
record Count(int number, /*@ nullable */ T value) XXX

we have the specification

1 final class Count {
2 //@ spec_public nullable
3 final private int number;
4

5 //@ spec_public
6 final private T value;
7

8 //@ public normal_behavior
9 //@ ensures this.count == count && this.value == value;
10 //@ pure
11 public Count(int number, T value);
12

13 //@ public normal_behavior
14 //@ ensures \result == number;
15 //@ pure
16 public int number();
17

18 //@ public normal_behavior
19 //@ ensures \result == value;
20 //@ pure
21 public int value();
22

23 //@ public behavior
24 //@ ensures true;
25 public int hashCode();
26

27 //@ public behavior

CHAPTER 10. DEFAULT SPECIFICATIONS AND SPECIFICATION INFERENCE 104

28 //@ ensures true;
29 public String toString();
30

31 //public behavior
32 //@ requires o instanceof Count;
33 //@ ensures \result == (
34 //@ ((Count)o).number == this.number &&
35 //@ Objects.equals(((Count)o).value, this.value));
36 public boolean equals(Object o);
37 }

Need to say what all other clauses are; conditions under which methods are pure and
under which they are ’signals false’ and what exceptions might be thrown

Record declarations can include customizations andmay include explicit declarations
of the fields and methods that are typically implicit. If there is any customization
then no default specification is generated; the user is expected to supply a complete
specification.

10.10.1 Lambda functions
Write this

10.10.2 Loops
Move this to where loop specs are discussed

A loop typically has four specification clauses:

• a loop invariant that constrains the value of the loop index (or \count value
§11)

• a loop invariant that gives the inductive predicate stating what the loop is ac-
complishing

• an assigns clause that states what the loop body modifies

• a decreases clause need to demonstrate loop termination

JML does not specify a default for any of these, though for simple loops all but the
second are quite easy to infer.

Chapter 11

JML Statements

JML statements are JML constructs that appear as statements within the body of a
Java method or initializer. Some are standalone statements, while others are specifi-
cations for loops or blocks or statements that follow.

The body of a method is not part of its interface—it is the implementation. Hence,
JML statements within the method body are not part of the method’s specification.
Rather they are generally statements that aid in the verification of the implementa-
tion or help to debug it. Consequently, JML includes just a few specification state-
ments that are commonly used. Individual tools supporting JML are likely to add
other specification statements to aid or debug the proof.

Many JML specification statements end with a semicolon. That semicolon is optional
if it immediately precedes the end of the JML comment (i.e., just before the terminat-
ing */ or end-of-line after removing any Java comments) and there is no immediately
following JML annotation. The semicolon is required if the statement is succeeded
by another statement within the same JML comment or in an immediately following
JML annotation.

Grammar:
<jml-statement> ::=

<jml-assert-statement><jml-assert-statement> §11.111.1
|<jml-assume-statement><jml-assume-statement> §11.211.2
|<jml-local-variable><jml-local-variable> §11.311.3
|<jml-local-class><jml-local-class> §11.411.4
|<jml-ghost-label><jml-ghost-label> §11.511.5
|<jml-unreachable-statement><jml-unreachable-statement> §11.711.7
|<jml-set-statement><jml-set-statement> §11.811.8
|<jml-loop-specification><jml-loop-specification> §??
|<jml-refining-specification><jml-refining-specification> §??

105

CHAPTER 11. JML STATEMENTS 106

11.1 assert statement and Java assert statement
Grammar:
<jml-assert-statement> ::=

<assert-keyword><assert-keyword> <opt-name><opt-name> <jml-expression><jml-expression> ;
<assert-keyword> ::= assert |assert_redundantly

Type checking requirements:

• the <jml-expression><jml-expression> must be boolean

The assert statement requires that the given expression be true at that point in
the program. A static checking tool is expected to require a proof that the asserted
expression is true and to issue a warning if the expression is not provable. A run-
time assertion checking tool is expected to check whether the asserted expression
is true and to issue a warning message if it is not true in the given execution of the
program.

In static-checking, after an assert statement, the asserted predicate is assumed to be
true. For example, in

1 // c possibly null \\
2 //@ assert c != null;\\
3 //@ int i = c.value;

if c is null prior to this code snippet, then the assert statement will trigger a ver-
ification failure, but no warning should be given on c.value since c != null is
implicitly assumed after the assert. Mattias - does KeY behave this way?

Clarify the recommended behavior of Java assert statements

By default, JML will interpret a Java assert statement in the same way as it does a
JML assert statement — attempting to prove that the asserted predicate is true and
issuing a verification error if not. This proof attempt happens whether or not Java
assertions are enabled (via the Java -ea option).

In executing a Java program, when assertion checking is enabled, a Java assert state-
ment will result in a AssertionError at runtime if the corresponding assertion eval-
uates to false; if assertion checking is disabled (the default), a Java assert statement
is ignored. Runtime assertion checking tools may implement JML assert statements
as Java assert statements or may issue unconditional warnings or exceptions.

11.2 assume statement
Grammar:
<jml-assume-statement> ::=

<assume-keyword><assume-keyword> <opt-name><opt-name> <jml-expression><jml-expression> ;
<assume-keyword> ::= assume |assume_redundantly

Type checking requirements:

CHAPTER 11. JML STATEMENTS 107

• the <jml-expression><jml-expression> must be boolean

The assume statement adds an assumption that the given expression is true at that
point in the program.

Static analysis tools may assume the given expression to be true. Runtime assertion
checking tools may choose to check or not to check the assume statements.

An assume statementmight be used to state an axiom or fact that is not easily proved.
However, assume statements should be usedwith caution. Because they are assumed
but not necessarily proven, if they are not actually true an unsoundness will be intro-
duced into the program. For example, the statement assume false;will render the
following code silently infeasible. Even this may be useful, since, during debugging,
it may be helpful to shut off consideration of certain branches of the program.

11.3 Local ghost variable declarations
Grammar:
<jml-local-variable> ::=

ghost <modifier><modifier>* <decl-type><decl-type> <identifier><identifier>

[= <jml-expression><jml-expression>];

A ghost local declaration serves the same purpose as a Java local declaration: it in-
troduces a local variable into the body of a method. A ghost declaration may be
initialized only with a (side-effect-free) JML expression. The type in the ghost decla-
ration may be either a Java or a JML type.

The only modifiers allowed for a ghost declaration, in addition to ghost, are

• final — as for Java declarations, this modifier means the variable’s value will
not be changed after initialization.

• Java annotations
• non_null, nullable - these may modify the <decl-type><decl-type> in the declaration,
if it is a Java reference type

Variables declared in such a ghost declaration may be used in subsequent JML ex-
pressions and they may be assigned values in set statements (§11.811.8).

Any other JML modifiers?

Grammar needs to permit array initializers

11.4 Local model class declarations
<jml-local-class> ::=

Need a grammar entry – requires ’model’; permits absence of method implementation

Should have active agreement to support this features

CHAPTER 11. JML STATEMENTS 108

Java permits local class declarations as method body statements. Similarly, JML per-
mits the declaration of a local model class as a specification statement. The syntactic
rules for a local JML model class are the same as for a local Java class, such as restric-
tions on scope and that all local variables used within the class definition are final.
However a local JML model class may use other JML constructs, such as JML ghost
variables and fields. Furthermore the methods of a local JML class need not have an
implementation.

The declaration of a JML local model class must be contained in just one JML annota-
tion. JML constructs within themodel class declaration, such asmethod specification
clauses, do not need to be contained in embedded JML annotations because they are
already in an outer JML annotation, as shown in the following code snippet.

1 public void m(int i) {
2 int k = i*i;
3 //@ ghost final int g = k;
4 /*@ model class Helper {
5 @ requires k == i*i;
6 @ ensures \result == k*k;
7 @ pure
8 @ int helper(int x);
9 @*/}
10 }

11.5 Ghost statement label
Grammar:
<jml-ghost-label> ::= <java-identifier><java-identifier> :[{ } | ;]

Java allows statement labels to be placed before statements; they serve as targets of
break and continue statements. JML also uses such labels as targets of \old and
\fresh expressions.

Consequently there is sometimes a need to add a label for JML purposes that can be
referred to by \old and \fresh. The JML ghost-label does that.

A ghost-label may be placed anywhere in a block immediately preceding a Java or
JML statement. If a statement must be introduced as the target of the label or the
statement label needs to be disambiguated from names on other JML constructs, the
optional forms //@ label: or //@ label: ; can be used.

Any Java identifier may be used for the label if it would be permitted to be a Java
label at that location, which means it may not be the name used to label an enclosing
labelled statement. A label namemay shadow the name of a previously labeled state-
ment. However, this is not recommended as it may cause amisreading if a reader does
not notice the need to disambiguate identically-named labeled statements.

CHAPTER 11. JML STATEMENTS 109

11.6 Built-in state labels
The \old (§12.1512.15) and \fresh (§12.1612.16) expressions can refer to the program state
at a particular statement label. JML also allows inserting statement labels into the
source code (§11.511.5).

In addition, JML provides some built-in state labels:

• Pre — the pre-state of the containing method (even in block contracts)
• Old

– in method or block contracts: the pre-state of that contract
– in specification statements: the pre-state of the innermost enclosing con-

tract (either a block contract, or if, there are no enclosing block contracts,
the pre-state of the enclosing method)

• Here

– in specification statements, the program state just prior to the statement
using the label

– in clauses evaluated in the pre-state of a contract, that pre-state
– in clauses evaluated in the post-state of a contract, that post-state

Implicit uses of these built-in labels always refer to the corresponding program state,
even if there is an explicit Java or ghost-label with the same name, as illustrated in
this example:

Need example

A possible extension is to allow escaped label names (e.g., \Pre) to always refer to
the built-in label, despite any explicit labels.

Possible other built-in labels are Post (post-state of contract), Init (after static
initialization), LoopEntry (just after loop initialization), LoopCurrent (beginning
of current loop iteration). (cf. ACSL)

11.7 unreachable statement
Grammar:
<jml-unreachable-statement> ::=

unreachable <opt-name><opt-name> [;]

The unreachable statement asserts that no feasible execution path will ever reach
this statement. Runtime-checking can only check that no unreachable statement
is executed in the current execution of a program.

It has been common practice to insert assert false; statements to check whether
a given program point is infeasible. The unreachable statement accomplishes the
same purpose with clearer syntax.

CHAPTER 11. JML STATEMENTS 110

11.8 set statement
Grammar:
<jml-set-statement> ::=

set <opt-name><opt-name> <java-statement><java-statement>

The java-statement in the grammar is not quite right since the statements can include
ghost variables. If the <java-statement> ends in a semicolon, that semicolon is re-
quired and may not be omitted just because it occurs at the end of a JML com-
ment.

Type checking requirements:

• the <java-statement><java-statement> may be any single executable Java statement, including a
block statement

The DRM requires a set
statement to take an as-
signment expression.

A set statement marks a statement that is executed during runtime assertion check-
ing or symbolically executed during static checking, commonly called ghost code. As
such the statement must be fully executable and may have side effects; also it may
contain references and assignments to local ghost variables and ghost fields, and calls
of model methods and classes that have executable implementations. The primary
motivation for a set statement is to assign values to ghost variables, but it can be
used to execute any statement.

JML previously contained a debug statement that was semantically equivalent to
//+DEBUG@ set statement

11.9 Loop specifications
Grammar:
<loop-specification> ::= (<loop-clause><loop-clause>)*
<loop-clause> ::= <loop-invariant><loop-invariant> |<loop-variant><loop-variant> |<loop-frame><loop-frame>
<loop-invariant> ::= <loop-invariant-keyword><loop-invariant-keyword> <jml-expression><jml-expression> ;
<loop-invariant-keyword> ::= loop_invariant |maintaining

|loop_invariant_redundantly
|maintaining_redundantly

<loop-variant> ::= <loop-variant-keyword><loop-variant-keyword> <jml-expression><jml-expression> ;
<loop-variant-keyword> ::= decreases |decreasing

|decreases_redundantly
|decreasing_redundantly

<loop-frame> ::=
<loop-frame-keyword><loop-frame-keyword> (\nothing |<location-set><location-set> ...);

<loop-frame-keyword> ::= assigning |loop_writes |loop_modifies

Type checking requirements:

CHAPTER 11. JML STATEMENTS 111

• the <jml-expression><jml-expression> in a <loop-invariant><loop-invariant> must be a boolean expression

• the <jml-expression><jml-expression> in a <loop-variant><loop-variant> must be a \bigint expression

• the <location-set><location-set>s in a <loop-assignable><loop-assignable> clause may contain local variables
that are in scope at the program location of the loop

• a <loop-specification><loop-specification> may only appear immediately prior to a Java loop state-
ment

• the variable scope for the clauses of a <loop-specification><loop-specification> includes the declara-
tion statement within a for loop, as if the <loop-specification><loop-specification> were textually
located after the declaration and before the loop body

Fix the grammar for the frame item

A special and common case of statement specifications is specifications for loops. In
many static checking tools loop specifications, either explicit or inferred, are essential
to automatic checks of implementations. Write this

11.9.1 Loop invariants
A loop invariant states a property that is maintained by the execution of the loop
body. Specifying a loop invariant implies two proof obligations:

• After any loop initialization (for a for-loop) but before the loop test or execution
of the loop body, the loop invariant must be true

• Assuming the loop invariant is true after the loop test but before beginning
execution of the loop body, the loop invariant must again be true just after the
loop update ststement has been executed and before the loop test is performed.
This includes any execution paths from continue statements and continue
statements with labels in enclosed loops. The loop invariant is not checked for
any break, throws or return statement that exits this loop.

It is important to realize that each iteration of the loop is checked independently, as
is the normal exit from the loop when the loop test is false. Thus anything that needs
to be known from a previous iteration must be present in an invariant. Here is an
example that illustrates the very common pattern for loop specifications.

1 // a is a non-null array to be initialized
2 //@ maintaining 0 <= k <= a.length;
3 //@ maintaining \forall int j; 0<=j<k; a[j] == j*j;
4 //@ assigning a[*];
5 //@ decreasing a.length-k;
6 for (int k=0; k<a.length; ++k) {
7 a[k] = k*k;
8 }
9 //@ assert \forall int j; 0<=j<a.length; a[j] == j*j;

There are two loop invariants here.

CHAPTER 11. JML STATEMENTS 112

• The first one simply, but importantly, restricts the range of the loop index: k
may take any value from 0 to a.length inclusive (k equals a.length at the
end of the last iteration, when, just like after all iterations, the loop invariant
must hold).

• The second iteration states what has been accomplished by the loop iterations
so far. Nothing from previous iterations is “remembered". What is known is
that all array values up to but not including k have been initialized. Then,
given the execution of the loop body and the update to the loop index k, the
loop invariant is again true for one more element of the array.

If k is a.length, as it is on exit from the loop, then, given the loop invariants, the
following assert statement is true.

Fix the example for the final agreed upon keywords

11.9.2 Loop variants
The loop invariants alone do not determine whether a loop terminates. For that we
need a well-defined measure that counts down to an end-point. JML implements this
with integers. The decreasing clause gives an expression thatmust be non-negative
at the beginning of each loop iteration (after the loop test) and is smaller after the
loop update and prior to the loop test after the conclusion of the loop body (including
control flows from continue statements, but not break, throws or return state-
ments). Because the variant expression begins as some finite value, is always non-
negative, and decreases on each iteration, we can infer that the loop will terminate
in some finite number of iterations.

The example above shows a very typical loop variant expression.

11.9.3 Loop frame conditions
The loop frame specification states which values are assigned to (that is. might pos-
sibly change) in the loop. The frame clause is independent of the loop index. In the
example above, the frame condition states a[*], that is that all elements of the array
may change during all the loop iterations, not just a[k], that a particular element is
changed during a particular iteration.

11.9.4 Inferring loop specifications
Loop specifications are not part of a method interface. The necessity of loop spec-
ifications is a result of the current state of specification technology, namely, that
inferring the loop specifications from arbitrary source code is an unsolved problem.
However, in many common cases the loop specifications can be inferred. In the ex-
ample above a tool might readily infer lines 2, 4, and 5, and possibly also line 3 for
simple loops.

Depending on the tool used, it may not be necessary to explicitly state each of these

CHAPTER 11. JML STATEMENTS 113

loop specification statements. However tools should be clear about any loop specifi-
cations that are implicitly used.

11.10 Statement (block) specification
Grammar:
<statement-specification> ::= refining <behavior-seq><behavior-seq>

The semantics of a block specification11 are very similar to those of a method spec-
ification (cf. §11). A method specification states preconditions on the legal states in
which a methodmay be called and gives conditions on what the effects of a method’s
execution may be, including comparisons between the pre-state (before the method
call) and the post-state (after the method completion). Similarly, a block specification
makes assertions about the execution of the statement (possibly a block statement)
that follows the block specification, or, if abegin JML statement (§11.1111.11) immediately
follows the statement specification, then the specification applies to the sequence of
statements within the begin-end block:

• For at least one of the <behavior><behavior>s in the <behavior-seq><behavior-seq>, all of the requires
clauses in that <behavior><behavior> must be true at the code location of the statement
specification

• For any <behavior><behavior> for which all of the requires clauses are true, each other
clausemust be satisfied in the post-state, that is after execution of the following
statement or begin-end block.

• The \result expression may not be used in any clause

There are a few conceptual differences between the method and statement specifica-
tions.

• In the pre- and post-states any local (including ghost) variables that are in scope
may be used in the clause expressions.

• As there is no return statement, the \result expression may not be used.

• There is no inheritance of specification cases as there might be for method
specifications.

• The returns, breaks, continues, and throws specification clauses are per-
mitted in a

The motivation for a block specification is that it summarizes the behavior of the
subsequent Java statement or begin-end block. Thus one application of this specifi-
cation idiom is to check the behavior of a section of a method’s implementation. It
also allows the remainder of the method body to be checked just using the statement
specification without needing to use the implementation.

1We use the term block specification (or block contract) even though the specification can apply to a
single statement because a block of statements is the usual case and because statement specification is
easily confused with specification statement as used in §1111

CHAPTER 11. JML STATEMENTS 114

For example, some block of code may implement a complicated algorithm. The im-
plementation writer may encapsulate that code in a syntactic block and include a
specification that describes the effects of the algorithm. Then a tool may separate its
static checking task into two parts:

• checking that the implementation in the block (along with any preceding code
in the method body) does indeed have the effect described by the specification

• checking that the surroundingmethod satisfies themethod’s specificationwhen,
within its body, the encapsulated block of code is replaced by its specification.

11.11 begin-end statement groups
Grammar:

<begin-end> ::= begin | end

Pairs of JML begin and end statements may be used to define a block of Java state-
ments, just as using opening and closing braces might in Java. However the begin and
end do not introduce a local scope and can be inserted in the code without modifying
the Java code per se.

Begin and end statement pairs may be nested. The end corresponding to a given
begin must be in the same scope as the begin, and not in a nested or containing
scope.

These begin-end blocks are only useful with statement specifications as described in
the next subsection

inline_loop statement

Chapter 12

JML Expressions

Grammar:
<jml-expression> ::=

<result-expression><result-expression> §12.1212.12
|<exception-expression><exception-expression> §12.1312.13
|<informal-expression><informal-expression> §12.1912.19
|<old-expression><old-expression> §12.1512.15
|<quantified-expression><quantified-expression> §12.1712.17
|<nonnullelements-expression><nonnullelements-expression> §12.1812.18
|<fresh-expression><fresh-expression> §12.1612.16
|<type-expression><type-expression> §12.2012.20
|<typeof-expression><typeof-expression> §12.2112.21
|<elemtype-expression><elemtype-expression> §12.2212.22
|<invariant-for-expression><invariant-for-expression> §12.2412.24
|<static-invariant-for-expression><static-invariant-for-expression> §12.2512.25
|<is-initialized-expression><is-initialized-expression> §12.2312.23

Missing some - check the list

|<java-math-expression><java-math-expression> §??
|<safe-math-expression><safe-math-expression> §??
|<bigint-math-expression><bigint-math-expression> §??
|<duration-expression><duration-expression> §12.3312.33
|<working-space-expression><working-space-expression> §12.3412.34
|<space-expression><space-expression> §12.3512.35
|<expression><expression> (<# |<#=) <expression><expression>

shift bit logical dot cast new methodcall ops

Need sections on \count and \values

115

CHAPTER 12. JML EXPRESSIONS 116

12.1 Syntax
JML expressions may include most of the operations defined in Java and additional
operations defined only in JML. JML operations are one of four types:

• infix operations that use non-alphanumeric symbols (e.g., <==>)
• identifiers that begin with a backslash (e.g., \result)
• identifiers that begin with a backslash but have a functional form (e.g., \old)
• methods defined in JMLwhose syntax is Java-like (e.g., JML.informal(...))

The Java-like forms replicate some of the backslash forms. The backslash forms are
traditional JML and more concise. However, the preference for new JML syntax is to
use the Java-like form since supporting such syntax requires less modification of JML
tools.

12.2 Purity (no side-effects)
Specification expressionsmust not have side effects. During run-time assertion check-
ing, the execution of specifications may not change the state of the program under
test. Even for static checking, the presence of side-effects in specification expressions
would complicate their semantics.

12.3 Java operations used in JML
Because of the pure expression rule (cf. §12.212.2), some Java operators are not permitted
in JML expressions:

• allowed: + - * / % == != <= >= < > .ˆ & | && || << >> >>> ?:

• prohibited: ++ -- = += -= *= /= %= &= |= ˆ= <<= >>= >>>=

12.4 Precedence of infix operations
JML infix operators may be mixed with Java operators. The new JML operators have
precedences that fit within the usual Java operator precedence order, as shown in
Table 12.112.1.

Note that, just as in Java, the bit-operations have precedence lower than equality.
So (a & b == 1) is a & (b == 1). For clarity’s sake, always use parentheses
around bit operations: ((a & b) == 1).

add ++ – into the table as Java only; check precedence

12.5 Well-defined expressions
An expression used in a JML construct must be well-defined, in addition to being
syntactically and type-correct. This requirement disallows the use of functions with

CHAPTER 12. JML EXPRESSIONS 117

Table 12.1: Java and JML precedence. Note that postfix and prefix ++ and - have the
same precedence as other postfix and prefix operations, but are not allowed in JML
expressions.
(cf. https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.htmlhttps://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html)

Java operator JML operator
highest precedence associativity

literals, names, parenthesis quantified
postfix: . [] method calls left

prefix: unary + - ! ˜ cast new right
* / % left

binary + - left
<< >> >>> left

<= < >= > instanceof <: <# <#= chainable
== != left
& left
ˆ left
| left
&& left
|| left

==> <== right
<==> <=!=> left

?: right
.. none

assignment, assign-op right
lowest precedence

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

CHAPTER 12. JML EXPRESSIONS 118

argument values for which the result of the function is undefined. For example, the
expression (x/0) == (x/0) is considered in JML to be not well-defined (that is,
undefined), rather than true by identity. An expression like (x/y) == (x/y) (for
integer x and y) is true if it can be proved that y is not 0, but undefined if y is possibly
0. For example, y != 0 ==> ((x/y) == (x/y)) is well-defined and true.

The well-definedness rules for JML operators are given in the section describing that
operator. The rules for Java operators used in JML expressions are given here. They
presume that the expressions are type correct. The [[]] notation denotes that the
enclosed expression is well-defined. In the following e, e1, etc. are <expression><expression>s, &
is short-circuiting conjunction, and ⇒ is short-circuiting implication.

(literals and names) true

(parenthesis) [[(e)]] ≡ [[e]]

(dot access) [[e. f]] ≡ [[e]] & e ̸= null, where
f is a field of the type of e

(array element) [[e[e1]]] ≡ [[e]] & [[e1]] &
e ̸= null & 0 ≤ e1 < e.length

(cast) [[(T)e]] ≡ [[e]], for a type name T What about overflow?

(unboxing) [[(T)e]] ≡ [[e]] & e ̸= null, for a type name T , including
implicit unboxing to primitive values

(boxing) [[(T)e]] ≡ true, for a type name T , including
implicit boxing of primitive values

(boolean negation) [[!e]] ≡ [[e]]

(complement) [[∼ e]] ≡ [[e]]

(string +) [[e1 + e2]] ≡ [[e1]] & [[e2]]

(non-short-circuit [[e1 op e2]] ≡ [[e1]] & [[e2]], for operators & | ^

binary operations) <= < == != > >=

(short-circuit &&) [[e1 && e2]] ≡ [[e1]] & (e1⇒[[e2]])

(short-circuit ||) [[e1 || e2]] ≡ [[e1]] & (¬e1⇒[[e2]])

(arithmetic [[e1 op e2]] ≡ [[e1]] & [[e2]],
operations) for operators + - * What about overflow?

(divide) [[e1 / e2]] ≡ [[e1]] & [[e2]] & e2 ̸= 0

(modulo) [[e1 % e2]] ≡ [[e1]] & [[e2]] & e2 ̸= 0

(conditional) [[e1 ? e2 : e3]] ≡ [[e1]] & (e1⇒[[e2]]) & (¬e1⇒[[e3]])

• method calls: well-defined iff (a) the receiver and all arguments arewell-defined
and (b) if the method is not static, the receiver is not null and (c) the method’s
precondition and invariants are true and (d) the method can be shown to not
throw any Exceptions in the context in which it is used

• new operator: well-defined iff (a) all arguments to the constructor call are well-

CHAPTER 12. JML EXPRESSIONS 119

defined, (b) the preconditions and static invariants of the constructor are sat-
isfied by the argument, and (c) the constructor does not throw any Exceptions
in the context in which it is called

• shift operators (<< >> >>>): well-defined iff all operands are well-defined.
Note that Java defines the shift operations for any value of the right-hand
operand; the value is trimmed to 5 or 6 bits by a modulo operation appropri-
ate to the bit-width of the left-hand operand. JML tools may choose to raise a
warning if the value of the right-hand operand is outside the ‘expected’ range.
Is the result undefined if the RHS is out of range? floating point

operations?

12.6 Chaining of comparison operators
Grammar:
<expression><expression> ::=

<expression><expression> ([<|<=] <expression><expression>)+
|<expression><expression> ([>|>=] <expression><expression>)+

Well-defined:
[[e1 op e2 op ... op en]]≡ ∀i [[ei]]

Type information:
All the ei must have numeric type; the result is boolean

In Java, an expression like a < b < c with a, b, and c having integer types is type-
incorrect because (a < b) is a boolean and booleans and integers cannot be com-
pared, and there is no implicit conversion between them, as in C.

However, JML allows such chains as a boolean operation that means (a < b) &

(b < c). The operators < and <= may be mixed in a chain, as may > and >=. The
equality operators are not chainable11 because the equality operators have different
precedence than relational operators. In addition, a < b == c < d is meaningful
in Java, as (a < b) == (c < d). Chaining, were it supported, would give it a dif-
ferent meaning in JML: (a < b) & (b == c) & (c < d).

Note that the desugaring of the chain is written with non-short-circuit operators.
This emphasizes that all the operands must be independently well-defined. Also it
allows static-checkers to optimize reasoning (non-short-circuit operators have sim-
pler semantics than short-circuit ones). Runtime assertions checks are welcome to
evaluate the expression in equivalent short-circuit fashion.

Do <: <# <#= chain?
1They are chainable in Dafny, by comparison.

CHAPTER 12. JML EXPRESSIONS 120

12.7 org.jmlspecs.lang.JML
Say more

12.8 Implies operator: ==>
Grammar:
<expression><expression> ::= <expression><expression> ==> <expression><expression>

Well-defined:
[[e1 ==> e2]]≡ [[e1]] & (e1 =⇒ [[e2]])

Type information:

• two arguments, each an expression of boolean type
• result is boolean

The ==> operator denotes implication and is a short-circuit operator. It is true if the
left-hand operand is false or the right-hand operand is true; if the left operand is
false, the right operand is not evaluated and may be undefined. The operation

<left> ==> <right>
is equivalent to

(! <left>) || <right> .

The ==> operator is right associative: P ==> Q ==> R is parenthesized as P ==> (Q

==> R). This is the natural association from logic: (P ==> Q) ==> R is equivalent
to (P && !Q) || R, whereas P ==> (Q ==> R) is equivalent to !P || !Q ||

R.

Obsolete syntax: The reverse implication operation <== is no longer supported.

Do we agree that <== is deprecated

12.9 Equivalence and inequivalence: <==> <=!=>

Grammar:
<expression><expression> ::=

<expression><expression> <==> <expression><expression>

|<expression><expression> <=!=> <expression><expression>

Well-defined:
[[e1 <==> e2]]≡ [[e1]] & [[e2]]
[[e1 <=!=> e2]]≡ [[e1]] & [[e2]]

Type information:

• two arguments, each an expression of boolean type
• the expression is well-defined if both operands are well-defined
• result is boolean

CHAPTER 12. JML EXPRESSIONS 121

The <==> operator denotes equivalence: it is true iff both operands are true or both
are false. It is equivalent to equality (==), except that it is lower precedence. For
example, P && Q <==> R || S is (P && Q) <==> (R || S),
whereas P && Q == R || S is (P && (Q == R)) || S.

The <=!=> operator denotes inequivalence: it is true iff one operand is true and the
other false. It is equivalent to inequality (!=), except that it is lower precedence. For
example, P && Q <=!=> R || S is (P && Q) <=!=> (R || S),
whereas P && Q != R || S is (P && (Q != R)) || S.

Both of these operators are associative and commutative. Accordingly left- and right-
associativity are equivalent. The operators are not chained: P <==> Q <==> R is
(P <==> Q) <==> R, not (P <==> Q) && (Q <==> R); for example, P <==> Q

<==> R is true if P is true and Q and R are false. Similarly P <=!=> Q <=!=> R is
(P <=!=> Q) <=!=> R and is true if P is true and Q and R are false.

12.10 JML subtype: <:
Is this the time
to have both <:=
and <:, with the
latter being a
proper subtype?

Type information:

• two arguments, each of type \TYPE
• well-defined iff both operands are well-defined
• result is boolean

The <: operator denotes JML subtyping: the result is true if the left operand is a
subtype of the right operand. Note that the argument types are \TYPE, that is JML
types (cf. §11). Say more about relationship to Java subtyping

Note that the operator would be better named <:=, since it is true if the two operands
are the same type.

12.11 Lock ordering: <# <#=
Type information:

• two arguments, each of reference type
• well-defined iff both operands are well-defined and both are not null
• result is boolean

It is useful to establish an ordering of locks. If lock A is always acquired before lock B
(when both locks are needed) then the system cannot deadlock by having one thread
own A and ask for B while another thread holds B and is requesting A. Specifications
may specify an intended ordering using axioms and then check that the ordering is
adhered to in preconditions or assert statements. Neither Java nor JML defines any
ordering on locks; the user must define an intended ordering with some axioms or
invariants.

CHAPTER 12. JML EXPRESSIONS 122

The <# operator is the ’less-than’ operator on locks; <#= is the ’less-than-or-equal’
version. That is

a <#= b ≡ (a <# b | a == b)

Previously in JML, the lock ordering operators were just the < and <= comparison op-
erators. However, with the advent of auto-boxing and unboxing (implicit conversion
between primitive types and reference types) these operators became ambiguous.
For example, if a and b are Integer values, then a < b could have been either a
lock-ordering comparison or an integer comparison after unboxing a and b. Since
the lock ordering is only a JML operator and not Java operator, the semantics of the
comparison could be different in JML and Java. To avoid this ambiguity, the syntax
of the lock ordering operator was changed and the old form deprecated.

12.12 \result

Grammar:
<result-expression><result-expression> ::= \result

Well-defined:
[[\result]]≡ true

Type information:

• no arguments
• result type is the return type of the method in whose specification the expres-
sion appears

• may only be used in ensures, duration, and working_space clauses

The \result expression denotes the value returned by a method. The expression
is only permitted in clauses of the method’s specification that state properties of
the state of a method after a normal exit. It is a type-error to use \result in the
specification of a constructor or a method whose return type is void.

12.13 \exception

\exception is an Open-
JML extension

Grammar:
<exception-expression><exception-expression> ::= \exception

Well-defined:
[[\exception]]≡ true

Type information:

• no arguments

CHAPTER 12. JML EXPRESSIONS 123

• the expression type is the type of the exception given in the signals clause;
it is java.lang.Exception in duration and working_space clauses

• only permitted in the signals, duration, and working_space clauses

The \exception expression denotes the exception object in the case a method exits
throwing an exception. Using this expression is an alternative form to using a vari-
able declared in the signals clauses’s declaration. For example, the following two
constructions are equivalent:

//@ signals (RuntimeException e) ... e ... ;

//@ signals (RuntimeException) ... \exception ... ;

Must we allow for exception to be null in duration and workingspace clauses; what is the
type in duration or workingspace clauses?

12.14 \count (\index)
Grammar:
<count-expression> ::= \count | \index

Type information: This expression is valid only in the body and specifications of a
loop. It has type \bigint.

The value of this term is the number of times the loop body has been completed. If
there are nested loops, it refers to the innermost loop that contains the expression.
For a simple loop, like for (int i=0; i<10; i++) ... , \count is the same as
the loop index i. In a more complex loop, like
for (int i=1; i<10; i*=2) ... , then some equality, such as i == 2\count for
this example, holds and using \count might be more useful.

In the for (var v: list) ... style of loop, there is no loop index. Then \count
is equivalent to a ghost variable as in

1 //@ ghost count = 0;
2 for (var v: list) {
3 ...
4 count++;
5 }

The preferred spelling of this term is \count. \index will be eventually deprecated.
The rationale is that the expression connotes the count of the number of times the
loop body has been executed, not the value of a loop index variable (though often
those are the same).

12.15 \old, \pre, and \past
Grammar:
<old-expression><old-expression> ::=

CHAPTER 12. JML EXPRESSIONS 124

(\old(<expression><expression> (, <label><label>)?)
(\pre(<expression><expression>)
(\past(<expression><expression>)

<label><label> ::= <id><id>

Type information: The type of the expression is the type of the first argument. Note
though that the expression may be evaluated in different state than the current state
and different variable names may be in scope.

Well-definedness: The expression is well-defined if the first argument is well-defined
and any label argument names either a built-in label (§11.611.6) or an in-scope Java or
JML ghost label (S11.511.5).

The scope of a label is the remainder of the block in which a label is defined, includ-
ing any nested blocks. Note that in Java a nested block is not allowed to reuse an
identifier as a label that labels an enclosing block. However, a label may be used sub-
sequent to a block that a previous use labeled; it then hides the name of the earlier
use, as show in the following example.

1 public void m(int i) {
2 a: {
3 a: {} // forbidden nested use
4 b: {}
5 }
6 a: {} // permitted subsequent use
7 //@ assert \old(i,a) ==m ... // refers to the most recent use of a
8 //@ assert \old(i,b) ==m ... // Error - b is out of scope
9 }

12.15.1 \old

The \old expression enables referring to the value of an expression in a previous
program state. An \old expression without a label argument implicitly refers to the
Old state (cf. §11.611.6). The value of the \old expression is the result of evaluating the
first argument in the state designated by the second argument. Note that identifiers
in the given argument are resolved and type-checked in the the given state. Thus
they may refer to different variables (with perhaps different types) than in the cur-
rent state. The following example shows how different variables can have the same
name.

1 public class Old {
2

3 public boolean k;
4

5 //@ requires k;
6 public void m() {
7

8 //@ assert k; // k is this.k, a boolean
9

CHAPTER 12. JML EXPRESSIONS 125

10 int k = 0;
11 //@ assert k >= 0; // k is the local k, an int
12 //@ assert \old(k); // k is this.k, a boolean
13 }
14 }

12.15.2 \pre

The \pre expression is simply an abbreviation for \old with the built-in label Pre
(cf. §11.611.6).

12.15.3 \past

The \past expression is similar to \old, but with slightly different semantics. It was
proposed at the Shonan Workshop as a way to have field access operations within
the method specifications carried out in a previous program state. It is currently
not adopted as a feature in JML, but the syntax is reserved for potential future use.
\past is an extension

Text needed

12.16 \fresh

Grammar:
<fresh-expression><fresh-expression> ::=

\fresh(<expression><expression> [, <java-identifier><java-identifier>])

Type information:

• the first argument is an expression of reference type
• the optional second argument is an identifier, whichmust be the name of either
a pre-defined label (§11.611.6) or a Java statement label or a JML ghost label (§11.511.5).
If omitted, the built-in label Old is implicit.

• expression type is boolean
• \freshmay be used only in postcondition clauses or statement specifications

Well-definedness: The argument must be well-defined and non-null. The second ar-
gument, if present, must be the identifier corresponding to an in-scope label or a
built-in label.

The arguments of the \fresh expression must be expressions that evaluate to non-
null references. The \fresh expression is true iff the argument is a reference to an
object that was not allocated in the state indicated by the given label.

CHAPTER 12. JML EXPRESSIONS 126

12.17 Quantified expressions
Grammar:
<quantified-expression> ::=

<quantifier><quantifier> <type-name><type-name> <java-identifier><java-identifier> ;
[[<expression><expression>];] <expression><expression>

<quantifier> ::=

\forall | \exists | \choose
|\num_of | \sum | \product | \max | \min

The first expression (called the range expression, R(x)) is optional. If omitted, its de-
fault value is true. The second expression is called the value expression,V (x).

Well-definedness: The quantified-expression is well-defined iff the two sub-expressions
are well-defined. For a quantifier Q

[[Q T x; R(x); V(x)]] ≡
(∀ T x; [[R(x)]])

∧(∀ T x; R(x)) =⇒ [[V(x)]])

The \choose expression has an additional well-definedness condition given below.

Type information:
A <quantified-expression><quantified-expression> declares a new local variable whose scope is only the two
expressions within the quantified-expression. The variable name hides any identical
names in enclosing scopes. The optional range expression must be boolean. The type
of value expression and of the whole quantified-expression depend on the quantifier,
as shown in the following table (T is the type of the declared local variable), with
details discussed in the subsections below.

Quantifier Value expression Entire expression
\forall boolean boolean
\exists boolean boolean
\choose boolean T
\num_of boolean \bigint

\sum \bigint or \real same as value expression
\product \bigint or \real same as value expression
\max N same as value expression
\min N same as value expression

Here N is any Java or JML numeric type

Although, the range expression is optional, runtime-assertion checking tools may use
its form to infer a constrained range over which to iterate in order to compute the
value of the quantified expression. Thus an appropriately written range expression
may improve the runtime performance of a compiled program, or even make execut-
ing the program possible at all.

CHAPTER 12. JML EXPRESSIONS 127

12.17.1 \forall, \exists
[I reformulated this] The \forall and \exists quantifiers correspond to the uni-
versal and existential quantifiers of first order predicate logic.

• the universally quantified expression (\forall T x; R(x); V(x)) is true
iff R(x) =⇒ V (x) is true for every x of type T .

• the existentially quantified expression (\exists T x; R(x); V(x)) is true
iff R(x)∧V (x) is true for some x of type T .

[A brief discussion that this without dispute on primitive data types, but that there
several ways of reading this for T a reftype. Although this is relevant for all gener-
alised quantifiers I would mention this here.]

12.17.2 \choose

Whereas the \exists quantifier tells whether there is some value that satisfies a
given predicate, the \choose expression yields an arbitrary one such value (if one
exists). Thus the \choose expression is well-defined only if such a value exists. That
is,

[[(\choose T x; R(x); V(x)(]] ≡
(∀ T x; [[R(x)]])

∧ (∀ T x; R(x) =⇒ [[V(x)]])
∧ (∃ T x; R(x)∧V (x))

The value of a choose-expression is any value that satisfies its range and value predi-
cates; its result is non-deterministic if there is more than one such value. Any logical
expressions that depend on the value of the choose-expression are valid only if they
are valid no matter which choice is made. In logic-speak, the choice is demonic, as if
a demon were making the choice, always seeking to invalidate your proof.

For example, in

1 //@ set int x = (\choice int k; 1 <= k <= 2);
2 //@ assert x == 1 || x == 2; // true
3 //@ assert x == 1; // false

the first assert is valid, but the second is not. In runtime-checking the second will be
reported true or false non-deterministically . [Well ... I would say the first is valid (ie.
true for all possible non-deterministic choices, whereas the second one is invalid, ie.
not true for all possible nondeterministic choices, but (in this case) true for some of
the choicees. x==42 would indeed always be false.]

Note also that two separate instances of the same \choose expression produce the
same result (so that logically, an identity axiom holds). That is, if, for all x

(R(x)∧V (x)) = (R′(x)∧V ′(x))
then

(\choose T x; R(x); V(x)) == (\choose T x; R’(x); V’(x)) .

CHAPTER 12. JML EXPRESSIONS 128

The choose operator implements Hilbert’s choice operator ε introduced in XXX. The
property last explained is called extensionality. All generalised quantifiers in JML are
extensional in the sense that whenever R(x) and V(x) is replaced by a semantically
equivalent R’ and V’, the expression yields the same value.

12.17.3 \one_of, \sum, \product, \max, \min
These generalized quantifiers perform various (commutative and associative) oper-
ations over the set of values specified by the range and value expressions: for each
operation, that operation is applied to all the values V(x) for which R(x) is true.

• \one_of: this operation yields the number of values for which R(x)∧V (x) is
true, with the result type being \bigint. If R(x) is not true for any x, the value
of the \num_of expression is 0.

• \sum: this operation yields the sum of integer or real values, with V(x) being
promoted to either \bigint or \real and the result being of the same type.
If R(x) is not true for any x, the value of the \sum expression is 0.

• \product: this operation yields the product of integer or real values, with V(x)
being promoted to either \bigint or \real and the result being of the same
type. If R(x) is not true for any x, the value of the \product expression is 1.

• \max: this operation yields the maximum of all the values V(x) for which R(x)
is true, with the result being of the same type as V (x). Note that \max is over-
loaded with the max-locset expression (§??). Needs default

• \min: this operation yields the minimum of all the values V(x) for which R(x)
is true, with the result being of the same type as V (x). Needs default

I’d prefer that max and min be undefined if the range is always false. Otherwise the
expression cannot be generalized to other data types. For example, to anything for which
a (pure) comparison function is supplied

We should leave room to generalize these operations to any commutative-associative
binary function, even if we do not add them to JML now.

12.18 \nonnullelements

Grammar:
<nonnullelements-expression><nonnullelements-expression> ::=

\nonnullelements (<expression><expression>)

Type information:

• a single argument that is an expression of either Java array type, a Java iterable
(which includes Java collections) or the \seq, \set or \map built-in types

• the expression is well-defined iff the argument is well-defined (it may be null)
• expression type is boolean

CHAPTER 12. JML EXPRESSIONS 129

The \nonnullelements expression is true iff the argument is non-null and each
element of the argument’s value is not null.

Do we need a separate recursive version?

12.19 informal expression: (*...*) and
JML.informal()

Grammar:
<informal-expression><informal-expression> ::=

(* .* *)
|JML.informal (<expression><expression>)

Well-defined:
[[(* .∗ *)]]≡ true
[[JML.informal(e)]]≡ [[e]]

Type information:

• special syntax
• the argument of JML.informal is a string literal
• expression type is boolean; value is always true

The syntax of the informal expression is
(* ... *),

where the ... denotes any sequence of characters not including the two-character se-
quence *). An alternate form is

JML.informal(<expression>) ,
where <expression> is a String literal. The character sequence and the string expres-
sion are natural language text that may be ignored by JML tools; the intent is to
convey to the reader some natural language specification that will not be checked by
automated tools.

In the second form, the argument is type checked andmust have type java.lang.String;
it is not evaluated. It is generally a string literal.

The expression always has the value true.

Examples:

//@ ensures (* data structure is self-consistent *);

//@ ensures JML.informal("data structure is OK");

public void m() ...

CHAPTER 12. JML EXPRESSIONS 130

12.20 \type

Grammar:
<type-expression><type-expression> ::=

\type(<jml-type-expression><jml-type-expression>)

Well-defined:
[[\type(<jml-type-expression><jml-type-expression>)]]≡ true

Type information:

• one argument, a type name
• result type is \TYPE

This expression is a type literal. The argument is the name of a type as might be used
in a declaration; the type may be a primitive type, a non-generic reference type, a
generic type with type arguments or an array type. The value of the expression is the
JML type value corresponding to the given type. It is analogous to .class in Java,
which converts a type name to a value of type Class. The type name is resolved like
any other type name, with respect to whatever type names are in scope.

Generic types must be fully parameterized; no wild card designations are permitted.
However type variables that are in scope are permitted as either stand-alone types or
as type parameters of a generic type.

For more discussion of JML types and their relationships to Java type, see §11.

Examples: (T is an in-scope type variable)

1 //@ ... \bs type(int) ...
2 //@ ... \bs type(Integer) ...
3 //@ ... \bs type(java.lang.Integer) ...
4 //@ ... \bs type(java.util.LinkedList<String>) ...
5 //@ ... \bs type(java.util.LinkedList<String>[]) ...
6 //@ ... \bs type(T) ...
7 //@ ... \bs type(java.util.LinkedList<T>) ...

12.21 \typeof

Grammar:
<typeof-expression><typeof-expression> ::=

\typeof (<expression><expression>)

Well-defined:
[[\typeof(e)]]≡ [[e]] & e ̸= null

Type information:

• one expression argument, of any type

CHAPTER 12. JML EXPRESSIONS 131

• well-defined iff the argument is well-defined and not null
• result type is \TYPE

The \typeof expression returns the dynamic type of the expression that is its argu-
ment. In run-time checking this may require evaluating the argument. This operation
returns a JML type (\TYPE); it is analogous to the Java method .getClass(), which
returns a Java type value (of type Class).

Verify that primitive types are allowed

Examples:

1 Object o = new Integer(5); \\
2 // o has static type Object, but dynamic type Integer
3 //@ assert \bs typeof(o) == \bs type(Integer); // - true
4 //@ assert \bs typeof(o) == \bs type(Object); // - false
5 //@ assert \bs typeof(5) == \bs type(int); // - true

12.22 \elemtype

Grammar:
<elemtype-expression><elemtype-expression> ::=

\elemtype (<expression><expression>)

Well-defined:
[[\elemtype(e)]]≡ [[e]] & e ̸= null & (e has array type)

Type information:

• one argument, of type \TYPE
• expression has type \TYPE

This operator returns the static element type of an array type.

Examples:

1 //@ assert \elemtype(\type(int[])) == \type(int);
2 //@ assert \elemtype(\type(int)) == \type(int); // -- undefined

Fix this text. Should we allow array values or only type expressions? Should a non-array
value be undefined or yield null?

12.23 \is_initialized

Grammar:
<is-initialized-expression><is-initialized-expression> ::=

\is_initialized (<type-name><type-name> ...)
|\is_initialized ()

CHAPTER 12. JML EXPRESSIONS 132

Type information: The argument must be the name of a reference type.

The value of this expression is true iff the class named as the argument has completed
its static initialization.

12.24 \invariant_for

Grammar:
<invariant-for-expression> ::=

\invariant_for (<expression><expression>)

Well-definedness: The expression is well-defined if the argument is. The argument
may be null.

Type information: The expression takes one argument, which is a possibly-null-valued
expression of any reference type. The result has boolean type.

The invariant_for expression is equivalent to the conjunction of the non-static
invariants in the static type of the receiver and all its super classes and interfaces
(recursively), with the argument as the receiver for the invariants.

If the value of the argument is null, the value of the expression is true.

Questions: Should this be the conjunction of invariants of the dynamic type?

Does visibility matter?

Does the order of the conjunctions matter? A natural order would be: the order of invari-
ants is (1) that invariants of super classes and interfaces occur before derived classes and
interfaces, (2) Object is first and the named type is last, and (3) within a type, invariants
occur in textual order.

Extensions: multiple arguments as sugar for the conjunction of multiple instances of
invariant_for

12.25 \static_invariant_for

Grammar:
<static-invariant-for-expression> ::=

\static_invariant_for (<type-name><type-name>)

Type information: The argument is a syntactic type name (not a typed expression)
that is the name of a Java or JML (that is, a model) class or interface, and not a
primitive type. If the type is a generic type, it must be fully parameterized. The value
of the expression is boolean.

This expression returns the conjunction of the static invariants of the given type. It
does not include invariants of super- or sub-types (either classes or interfaces).

CHAPTER 12. JML EXPRESSIONS 133

If the type being named in the argument is a Java generic type, any type parameters
are optional. Recall that in Java type variables may not be used in static contexts; a
declaration of a static invariant is a static context, so type variables may not be used
in static invariants. Thus any concrete type given as a type parameter is irrelevant to
the invariant. For example
\static_invariant_for(java.util.List) and
\static_invariant_for(java.util.List<Integer>)mean the same thing,
while \static_invariant_for(T), where T is a type variable, is illegal.

Open questions: does visibility matter? Do we exclude invariants of super-types? Does
order of conjoining matter?

Extensions: - multiple arguments as sugar for the conjunction of multiple instances of
static_invariant_for

12.26 \not_modified

Grammar:
<not-modified-expression><not-modified-expression> ::=

\not_modified (<expression><expression> ...)
|\not_modified ()

Type information:

• Strict JML: one argument, an expression of any type other than void
• Extension: any number of arguments, each expression of any type other than
void

• well-defined iff the arguments are well-defined
• result type is boolean

A \not_modified expression is a two-state expression that may occur only in post-
condition clauses. It satisfies this equivalence:

\not_modified(o) == (\old(o) == (o)))
The argument may be null.

A \not_modified expression with multiple arguments is the conjunction of the cor-
responding terms each with one argument; if \not_modified has no arguments, its
value is true.

The RM says the argument is a store-ref list, rather than an expression. Which do
we want? A store-ref-list allows constructions such as o.* or a[*] or a[1..6] but not
a+b.

12.27 \not_assigned

Grammar:
<not-assigned-expression><not-assigned-expression> ::=

\not_assigned (<store-ref-expression><store-ref-expression> ...)

CHAPTER 12. JML EXPRESSIONS 134

Type information: Each argumentmust be properly typed. The expression has boolean
type.

Well-definedness: The expression is well-defined iff each argument is well-defined.

This expression may be used only in postconditions or in statement specifications. In
a postcondition of a contract, the expression is true if none of the arguments have
been assigned to in the body of code that the contract specifies (i.e., a method body
or a block). In a statement specification (e.g., an assert statement), the expression is
true if none of the arguments have been assigned to since the beginning of the inner-
most block contract, or of the method body if there is no enclosing block contract,
and up to the position of the containing specification statement.

12.28 \only_assigned, \only_accessed,
\only_captured

Grammar:
<only-assigned-expression> ::=

\only_assigned (<store-ref-expression><store-ref-expression> ...)
<only-accessed-expression> ::=

\only_accessed (<store-ref-expression><store-ref-expression> ...)
<only-captured-expression> ::=

\only_captured (<store-ref-expression><store-ref-expression> ...)

Type information: Each argumentmust be properly typed. The expression has boolean
type.

Well-definedness: The expression is well-defined iff each argument is well-defined.

The argument list of this expression denotes a locset, as described in §11.

This expression may be used only in postconditions or in statement specifications.
In a postcondition of a contract, the expression is true iff the set of locations that
have been assigned to, accessed, or captured, respectively, in the body of code that
the contract specifies (i.e., a method body or a block) is a subset of the argument.
In a statement specification (e.g., an assert statement), the expression is true if the
set of locations that have been assigned to, accessed, or captured, respectively, since
the beginning of the inner-most block contract, or of the method body if there is
no enclosing block contract, and up to the position of the specification statement
containing the expression.

12.29 \only_called

Grammar:
<only-called-expression> ::=

\only_called (<method-signature><method-signature> ...)

CHAPTER 12. JML EXPRESSIONS 135

Type information: The arguments are not typed. The expression has boolean type.

Well-definedness: The expression is always well-defined (given that all the arguments
are type-correct, as defined in §8.5.88.5.8).

The argument list of this expression denotes a set of methods, as described in §8.5.88.5.8.
If there are no arguments, the set of methods is empty.

This expression may be used only in postconditions or in statement specifications. In
a postcondition of a contract, the expression is true if the set of methods that have
been called in the body of code that the contract specifies (i.e., a method body or
a block) is a subset of the argument. In a statement specification (e.g., an assert

statement), the expression is true if the set of methods that have been called since
the beginning of the inner-most block contract, or of the method body if there is
no enclosing block contract, and up to the position of the specification statement
containing the expression.

12.30 \lockset and \max
Grammar:
<locset-expression> ::=

\lockset
|\max (<expression><expression>)

Type information:

• The type of \lockset is set<Object>

• The type of the argument of \max must be set<Object>; the result of the
\max expression is Object.

Well-definedness:
[[\lockset]]≡ true
[[\max(<expression><expression>)]]≡

[[<expression><expression>]]∧ <expression><expression> ̸= null

The value of \lockset is a set of Objects that have locks. The value of \max is the
element of such a set that has the largest lock value, as defined by axioms on the <#
operator; the value of \max is null if the argument is an empty set.

Issue: We don’t currently have a built-in set type

12.31 \reach

Text needed

CHAPTER 12. JML EXPRESSIONS 136

12.32 Set comprehension
Text needed

12.33 \duration

Grammar:
<duration-expression><duration-expression> ::=

\duration (<expression><expression>)

Type information:

• one argument, an expression of any type, including void
• well-defined iff the argument is well-defined
• expression has type long

Here we say that the ar-
gument is an expression,
whereas the DRM says
it must be an explicit
method or constructor
call.

The value of a \duration expression is the maximum number of virtual machine
cycles needed to evaluate the argument. The argument is not actually executed and
need not be pure. However, reasoning about assertions containing \duration ex-
pressions is based on the specifications of method calls within the expression, not on
their implementation. Consequently, for a \duration expression to be useful, any
methods or constructors within its argument must have a duration expression as
part of their method specification.

The argument must be an executable expression because different expressions (e.g.,
method calls with different arguments) may consume different numbers of machine
cycles during execution.

Say more about what a virtual machine cycle is.

What about runtime assertion checking

12.34 \working_space

Grammar:
<working-space-expression><working-space-expression> ::=

\working_space (<expression><expression>)

Type information:

• one argument, of any type, including void
• well-defined iff the argument is well-defined

CHAPTER 12. JML EXPRESSIONS 137

• expression has type long

Here we allow the ar-
gument to be any ex-
pression. The DRM re-
quires the argument to be
a method or constructor
call.

The result of the \working_space expression is the number of bytes of heap space
that would be required to evaluate the argument, if it were executed. The argument is
not actually executed andmay contain side-effects. That is, if \working_space(expr)
free bytes are available in the system and there are no other concurrent processes or
threads executing, then evaluating expr will not cause an OutOfMemory error. Is
this last sentence true?

The argument must be an executable expression because different expressions (e.g.,
method calls with different arguments) may consume different amounts of memory
space during execution.

12.35 \space

Grammar:
<space-expression><space-expression> ::=

\space (<expression><expression>)

Type information:

• one argument, of any reference type
•
• expression has type \bigint

Well-definedness:
[[\space(<expression>)]]≡ [[<expression>]]

The result of a \space expression is the number of bytes of heap space occupied
by the argument. This is a shallow measure of space: it does not include the space
required by objects that are referred to by members of the object, just the space to
hold the references themselves and any primitive values that are members of the
argument.

What about padding for alignment

12.36 Store-ref expressions
Grammar:
<store-ref-expression> ::=

<non-wild-store-ref-expression><non-wild-store-ref-expression>

CHAPTER 12. JML EXPRESSIONS 138

|<store-ref-expression><store-ref-expression> . * (a wild-field store-ref)
|<type-name><type-name> . * (a static wild-field store-ref)

<non-wild-store-ref-expression> ::=
<java-identifier><java-identifier>

(a field or local variable store-
ref)

|<type-name><type-name> . <java-identifier><java-identifier>
(a static field store-ref)

|<non-wild-store-ref-expression><non-wild-store-ref-expression> . <java-identifier><java-identifier>
(a field store-ref)

|<non-wild-store-ref-expression><non-wild-store-ref-expression> [<expression><expression>]
(an array element store-ref)

|<non-wild-store-ref-expression><non-wild-store-ref-expression> [<expression><expression> .. <expression><expression>]
(an array-range store-ref)

|<non-wild-store-ref-expression><non-wild-store-ref-expression> [*]
(a wild-array store-ref)

Type information: For store-ref expression o and a type-name T,

• A <store-ref-expression> does not have a type, but a
<non-wild-store-ref-expression> does have a type

• In o. f , f must name a field of the type of o, which must have reference type;
the type of the expression is the type of the field f .

• In o.∗, o must be a reference type

• In T. f , T must name a reference type, f must name a static field of T ; the type
of the expression is the type of the field f .

• In T.∗, T must be a valid type name of a reference type

• In o[i], o must be an array type, i must be (convertible to) \bigint, and the
type of the expression is the element type of the array

• In o[i.. j], o must be an array type, i and j must be (convertible to) \bigint,
and the type of the expression is the element type of the array

• In o[∗], o must be an array type, and the type of the expression is the element
type of the array

Well-definedness:
[[o. f]]≡ [[o]]∧o ̸= null
[[o.∗]]≡ [[o]]∧o ̸= null
[[T. f]]≡ true
[[T.∗]]≡ true
[[a[i]]]≡ [[a]]∧a ̸= null∧0 ≤ i < a.length
[[a[i.. j]]]≡ [[a]]∧a ̸= null∧0 ≤ i∧ j < a.length
[[a[∗]]]≡ [[a]]∧a ̸= null

CHAPTER 12. JML EXPRESSIONS 139

A store-ref expression denotes a set ofmemory locations, that is a \locset (§11).

• A local variable store-ref (v) denotes the location of that (stack) variable

• A field store ref (o.f or f, where the f names a field (that is, this.f) denotes
the location of the named field of the object; if the named field is a model field,
the expression denotes the set of all locations that are contained in that model
field

• A static field store ref (T.f) denotes the location of the named static field of
the class; if the named field is a model field, the expression denotes the set of
all locations that are contained in that model field

• A wild-field store-ref (o.* denotes the set of locations of all the fields of the
given object

• A static wild-field store-ref (T.* denotes the set of locations of all the static
fields of the given type

• An array element store-ref (a[i]) denotes the one array-element of the given
array

• An array range store-ref (a[i.. j]) denotes the locations of the array elements
from indices i to j inclusive

• A wild-array store-ref (a[∗]) denotes the locations of all of the array elements
of the given array

Note that the grammar does not allow constructions like o. ∗ .∗, but it does allow
a[∗]. f and a[∗][∗].

Questions: Does T.* include supertype fields? Does o.* include static fields? fields of the
dynamic type? fields of super types?

Include \till as a range

Chapter 13

Arithmetic modes

Programming languages use integral and floating-point values of various ranges and
precisions. However, often specifications arewritten and understood asmathematical
integer and real values. JML’s arithmetic modes allow the choice of using mathemat-
ical or machine-precision types for integers and floating-point numbers in specifica-
tions. They also allow enabling and disabling warnings about out-of-range opera-
tions.

In JML, the type of mathematical integers is expressed as \bigint; the type of math-
ematical reals is \real.

13.1 Integer arithmetic

13.1.1 Integer arithmetic modes
Chalin [1414] surveyed programmer expectations and desires and identified three use-
ful integer arithmetic modes:

• Java mode: values belong to one of Java’s fixed-bit-length data types; overflows
and underflows either occur silently or result in undefined values according to
the rules of Java arithmetic

• Safe mode: values belong to one of Java’s fixed-bit-length data types; overflows
and underflows cause static or dynamic warnings

• Math (‘bigint’) mode: numeric values are promoted to mathematical types
prior to arithmetic operations, so arithmetic operations do not result in over-
flow or underflow warnings; warnings may be issued when values are assigned
or explicitly cast back into fixed-bit-length variables.

Chalin proposed that most of the time, programmers would like Safe mode semantics
for programming language operations and Math mode for specification expressions.

140

CHAPTER 13. ARITHMETIC MODES 141

Static checking can reason about these types using usual logics with arithmetic; run-
time checking uses java.math.BigInteger to represent \bigint.

JML contains a number of modifiers and pseudo-functions to control which mode is
operational for a given sub-expression. As would be expected, the innermost mode
indicator in scope for a given expression overrides enclosing arithmetic mode indica-
tors. The arithmetic mode can be set separately for the Java source code and the JML
specifications.

• the class and method modifiers code_java_math, code_safe_math, and
code_bigint_math, and corresponding annotation types @CodeJavaMath,
@CodeSafeMath, and @CodeBigintMath, set the default arithmetic mode for
all expressions in Java source code within the class or method (unless overrid-
den by a nested mode indicator).

• the class and method modifiers spec_java_math, spec_safe_math, and
spec_bigint_math, and corresponding annotation types @SpecJavaMath,
@SpecSafeMath, and @SpecBigintMath, set the default arithmetic mode to
be used within JML specifications, within the respective class or method.

• Within specification expressions, the operators \java_math, \safe_math,
and \bigint_math can be used to locally alter the arithmetic mode. These
take one argument, an expression, and set the arithmetic mode for evaluating
that expression (unless overridden by a nested arithmetic mode operator); the
result of these operators has the type and value of its argument, adjusted for
the arithmetic mode.

• the default arithmetic mode for the whole static or dynamic analysis are set
by the tool in use (e.g., by command-line options); in the absence of any other
setting, the default modes should be safe math for Java code and bigint math
for specifications.

Change the annotations to be simply@CodeMath and@SpecMathwith a value?

The arithmetic mode affects the semantics of these operators:

• arithmetic: unary plus, unary minus, and binary + - * / %

• shift operations: << >> >>>

• cast operation

• Math functions ???

The semantics of these operations in each mode are described in the following sec-
tions.

Say more about the explicit semantics

CHAPTER 13. ARITHMETIC MODES 142

13.1.2 Semantics of Java math mode
Java defines several fixed-precision integral and floating-point data types. In addition
JML allows the \bigint and \real data types. The arithmetic and shift operators
act on these data types as follows:

• implicit conversion. The operands are individually converted to potentially
larger data types as follows:

– if either operand is \real, the other is converted to \real,

– else if one operand is \bigint and the other either double or float,
they both are converted to \real,

– else if either operand is double, the other is converted to double,

– else if either operand is float, the other is converted to float,

– else if either operand is \bigint, the other is converted to \bigint,

– else if either operand is long, the other is converted to long,

– else both operands are converted to int.

• the result type of each arithmetic operator is the same as that of its implicitly
converted operands

• the result type of a shift operator is the same as its left-hand operand

• double and float operators behave as defined by the IEEE standard

• the unary plus operation simply returns its operand (after implicit conversion)

• the unary minus operation, when applied to the least int or long value will
overflow, returning the value of the operand

• binary add, subtract, and multiply operations on int or long values may over-
flow or underflow; the result is truncated to the number of bits of the result
type

• the binary divide operation will overflow when the least value of the type is
divided by −1. The result is the least value of the result type.

• the binary modulo operation does not overflow. Note that the sign of the result
is the same as the sign of the dividend, and that it is always true that x ==
(x/y)∗ y+(x%y) for x and y both int or both long.11

• the shift operators apply only to integral values. Note that in Java, x << y ==
x << (y&n) where n is 31 when x is an int and 63 if x is a long. However, no
such adjustment to the shift amount happens when the type is \bigint.

• In narrowing cast operations, the value of the operand is truncated to the num-
ber of bits of the given type.

1https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.3https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.3

https://docs.oracle.com/javase/specs/jls/se7/html/jls-15.html#jls-15.17.3

CHAPTER 13. ARITHMETIC MODES 143

• A divide or modulo operation with the right operand of 0 produces a divide-
by-zero error

13.1.3 Semantics of Safe math mode
The result of an operation in safemathmode is the same as in Javamathmode, except
that any out of range value causes a verification error in static or dynamic checking.
These warnings are produced in these cases:

• a unary minus applied to the least value of the int or long type

• a binary plus or minus or multiply of integral values where the mathematical
result would lie outside the range of the data type

• a divide on integral values where the numerator is the least value of the type
and the denominator is -1

• a shift operation in which the right-hand value is negative or is larger than 31
for int values or 63 for long values

• narrowing cast operations on integral values in which the result is not equal to
the argument (because of truncation).

• a divide or modulo operation with the right operand of 0 produces a divide-by-
zero error

There is one additional nuance of safe math mode. The value of \sum, \prod, and
\num_of quantifiers is computed in bigint mode and then the result is cast to
the type of the quantifier expression; if there is an overflow on that cast, a verifi-
cation warning is given. The result is the same as if the expression were computed in
java math mode. Note though that the default arithmetic mode for specifications is
bigint mode, so this situation rarely arises.

13.1.4 Semantics of Bigint math mode
In bigintmath mode, all reasoning is performed with each integral value promoted
to an infinite-precision mathematical value. Thus there are no warnings issued on
arithmetic operations (except divide or modulo by 0). Warnings may be issued when
a mathematical value is cast to a fixed-precision programming language type or as-
signed to a variable of a fixed-precision type.

13.1.5 Arithmetic modes and Java code
Java programs are executed using what in JML is called java-math mode. However,
when analyzing a program using JML, safe-math mode is assumed for Java code so
that any arithmetic overflows are discovered. Though there are situations in which
overflows are intended, that is ordinarily not the case.

JML allowsmath-mode (bigint-mode) to be stipulated for analysing Java code as well.
However the semantics of this mode are not yet defined.

CHAPTER 13. ARITHMETIC MODES 144

Question: In math mode is it just the operations that are on math types and then casts or
writes to variables might trigger warnings; or are all integral data types implicitly bigint
and real? - this latter can work for local declarations but not for formal parameters of
callees

13.2 Real arithmetic modes
Operations using real numbers are quite straightforward; there are only limited cases
(such as divide by zero or square roots of negative numbers) for which the results are
undefined.

In contrast, floating point (FP) operations are rather complex. JML presumes that fp
arithmetic follows the IEEE-754 standard. Results of operations are rounded, so using
== is perilous. There are also a positive and negative zero, a positive and negative
infinity, and NaN (not-a-number). Furthermore, operations on NaNs are unusual in
that (NaN == NaN) is false and the equals operation on Double and Float values is
different than that == operation on double and float values.

It is tempting to treat all Java double and float quantities as real numbers. How-
ever, the Double and Float classes define constants for NaN an positive and neg-
ative infinity, so some accommodation must be made for these aspects of FP num-
bers.

JML defines two floating-point arithmetic modes: fp_strict and fp_real.

13.2.1 fp_strict mode
In fp_strict mode, all operations among double and real quantities have the
results that are stipulated by the IEEE-754 standard. Conversions between floating
point values and real values are permitted.

describe real->fp conversion

In practice, static verification in fp_strict requires a backend SMT solver that sup-
ports reasoning about floating-point arithmetic.

what about rounding modes

13.2.2 fp_real mode
In fp_realmode, a FP number is modeled as either a NaN, positive infinity, negative
infinity, negative zero, or a real number. Most of the time, operations on FP numbers
are just operations on corresponding reals, with only the special cases of operations
with undefined results needing the special floating point values.

The results of operations using fp_real are a bit more intuitive than when using
precise floating-point, but they are not the same. For example, the product of two
finite real numbers will always produce another finite real number; but the product
of two FP numbers may overflow and yield an infinity value.

CHAPTER 13. ARITHMETIC MODES 145

Safe mode - i.e. overflow and NaN warning

Local change of mode

TBD -reference what is done in ACSL

Chapter 14

Specification and verification
of lambda functions

TODO: to be written

146

Chapter 15

Universe types

TODO: To be written

147

Chapter 16

Model Programs

Describe the intent, syntax and semantics of model programs

148

Chapter 17

Specification .jml files

Agreed that jml files completely supplant Java files if both are present for a given .top-
level class. In that case any jml annotation comments in the java file are completely
ignored – they need not even be parseable.

Resolved?: MU: I think this section should go into a later chapter, it is too technical here.
We mention all JML artifacts before actually having introduced them. Resolved?: GL:
Yes, maybe it should be in a chapter on lexical analysis. Resolved?: DRC: Moved it here
- is this OK

Specifications for a Java class and its members can be placed inline within the Java
source file for that class or they can be placed in a parallel specification file. Such a
specification file has a .jml extension.

17.1 Locating .jml files
A .jml file has the same package designation as its corresponding class. It is up
to tools supporting JML to determine where .jml files are stored and how they are
retrieved. Typically, however, .jml files are stored in a folder hierarchy corresponding
to the package hierarchy, in the same way that .java source files are stored in a file
system, with the only difference being the filename extension. The .jml specification
files may be stored mixed in with the .java source files or may be stored underneath
a different set of package roots. Tools supporting JMLwill providemeans to designate
where the specification files are located.

JML allows at most one .jml file per Java class. 11

1In original JML, a sequence of specification files was allowed, each one further refining its predecessor.
There were complicated rules about how to combine these specifications. That system is no obsolete and
no longer supported; it was complex and not used.

149

CHAPTER 17. SPECIFICATION .JML FILES 150

17.2 Rules applying to declarations in .jml files
A .jml file is syntactically similar to the corresponding .java file. The form follows
the following rules. Every .jml file has a corresponding .java or .class file; where
no .java file is available, the .jml file is similar to the .java file that would have
been compiled to produce the .class file.

The principle present throughout these rules is that a declaration in a JML file either
(1) corresponds to a declaration in the Java file, having the same name, types, non-
JML modifiers and annotations, or (2) does not correspond to a Java declaration,
in which case it must declare a different name. Declarations that correspond to a
Java declaration must not be in JML annotations and must not be marked ghost or
model; JML declarations that do not correspond to Java declarations must be in JML
annotations and must be marked ghost or model.

File-level rules

• The .jml file has the same package declaration as the .java file.

• The .jml file may have a different set of import statements and may, in addi-
tion, include model import statements.

• The .jml file must include a declaration of the public type (i.e., class or inter-
face) declared in the .java file. It may but need not have JML declarations of
non-public types present in the .java class. Any type declared in the .jml
file that is not present in the .java file must be in a JML annotation and must
have a model modifier.

Class declarations

• The JML declaration of a class and the corresponding Java declaration must
extend the same superclass, implement the same set of interfaces, and have
the same set of Java modifiers and Java annotations. The JML declaration may
add additional JML modifiers and annotations.

• Nested and inner class declarations within an enclosing non-model JML class
declaration must follow the same rules as file-level class declarations: they
must either correspond in name and properties to a corresponding nested or
inner Java class declaration or be a model class.

• JMLmodel classes need not have full implementations, as if theywere Java dec-
larations. However, if runtime-assertion checking tools are expected to check
or use a model class, it must have a compilable and executable declaration.

Interface declarations

• The JML declaration of a interface and the corresponding Java declarationmust
extend the extend the same set of interfaces and have the same set of Java
modifiers and Java annotations. The JML declaration may add additional JML
modifiers and annotations.

CHAPTER 17. SPECIFICATION .JML FILES 151

• In Java, fields declared in an interface are always public and static. JML declara-
tions of model fields within an interface may be non-static; the JML instance
modifier designates a non-static field.

Method declarations

• Methods declared in a non-model JML type declarationmust either correspond
precisely to a method declared in the corresponding Java type declaration or
be a model method. Correspond precisely means having the same name, same
type arguments (up to renaming), exactly the same argument and return types,
and the same set of declared exceptions.

• Methods that correspond to Java methods must not be declared model and
must not have a body. They must have the same set of Java modifiers and
annotations as the Java declaration, but may add additional JMLmodifiers and
annotations.

• A Java method of a class or interface need not have a JML declaration (in which
case various default specifications might apply).

Field declarations

• Fields declared in a non-model JML type declaration must either correspond
precisely to a field declared in the corresponding Java type declaration or be
a model or ghost field. Correspond precisely means having the same name
and type and Java modifiers and annotations. The JML declaration may add
additional JML modifiers and annotations.

• A JML field declaration that corresponds to a Java field declaration may not
be in a JML annotation, may not be model or ghost and must not have an
initializer.

• A JML field declaration that does not correspond to a Java field declaration
must be in a JML annotation and must be either ghost or model.

• ghost field declarations have the same grammatical form as Java declarations,
except that they may use JML types and operators and may refer to names
declared in other ghost or model declarations.

• model field declarations have the same grammatical form as Java declarations,
except that they may use JML types; they may not have initializers.

• A Java field of a class or interface need not have a JML declaration (in which
case various default specifications might apply).

Initializer declarations

• A Java class may contain declarations of static or instance initializers. A JML
redeclaration of a Java class may not have any initializers.

• A JML model class may have JML initializer clauses.

CHAPTER 17. SPECIFICATION .JML FILES 152

17.3 Combining Java and JML files
The specifications for the Java declarations within a Java compilation unit are deter-
mined as follows.

• If there is a .java file and no corresponding .jml file, then the specifications
are those present in the .java file.

• If there is a .java file and a corresponding .jml file, then the JML spec-
ification present in the .jml file supersedes all of the JML specifications in
the .java file, except those within a method body; class, method interface
and field specifications in the .java file are ignored, even where there is no
method declared in the .jml file corresponding to a method in the .java file.

• If there is no .java file, but there is a .class file and a corresponding .jml
file, then the specifications are those present in the .jml file.

• If there is no .java file and no .jml file, only a .class file, then default
specifications are used (cf. §1010).

When there is a .jml file processing proceeds as follows to match declarations in
JML to those in Java. First all matches among type declarations are established re-
cursively:

• Top-level types in each file are matched by package and name. The type-
checking pass checks that themodifiers, superclass and super interfacesmatch.
JML classes that match are not model and are not in JML annotations; JML
classes that do not match must be model and must be in JML annotations. Not
all Java declarations need have a match in JML; those that have no match will
have default specifications.

• Model types contain their own specifications and are not subject to further
matching.

• For each non-model type, matches are established for the nested and inner
type declarations in the .jml and .java declarations by the same process,
recursively.

Then for each pair of matching JML and Java class or interface declarations, matches
are established for method and field declarations.

• Field declarations are matched by name. Type-checking assures that declara-
tions with the same name have the same type, modifiers and annotations.

• Method declarations are matched by name and signature. This requires that
all the processing of import statements and type declarations is complete so
that type names can be properly resolved.

For each pair of matching declarations, the JML specifications present in the .jml
file give the specifications for the Java entity being declared. If there is a .jml file but
no match for a particular Java declaration in the corresponding .java file, then that
declaration uses default specifications, even if the .java file contains specifications.

CHAPTER 17. SPECIFICATION .JML FILES 153

The contents of the .jml file supersede all the JML contents of the .java file; there
is no merging of the files’ contents. 22

17.4 Specifications in method bodies
Specification statements in method bodies are necessarily stated in the .java source
file, even if there is a .jml file. Specification statements inmethod bodies are there to
aid the proof of the method’s specification and are not part of the method’s interface
or its specification.

17.5 Obsolete syntax
The refine and refines statements are no longer recognized. The previous (com-
plicated) method of finding specification files and merging the specifications from
multiple files is also no longer implemented. The only specification file suffix allowed
is .jml; the others — .spec, .refines-java, .refines-spec, .refines-jml —
are no longer implemented.

In addition, the .jml file is now sought before seeking the .java file; if any cor-
responding .jml file is found, then any specifications in the .java file are ignored
(except those within method bodies). This is a different search algorithm than was
previously used.

2Previous definitions of JML did require merging of specifications from multiple files; this requirement
added complexity without appreciable benefit. The current design is simpler for tools, with the one draw-
back that the JML contents of a .java file is silently ignored when a .jml file is present, even if that .jml
file does not contain a declaration of a particular entity.

Chapter 18

Interaction with other tools

18.1 Interaction with the Checker framework
To be written

154

Appendix A

Summary of Modifiers

The tables on the following pages summarize where the various Java and JML modi-
fiers may be used.

Fix up page break Review for correctness and completeness.

Missing: non_null_by_default

Add in secret, query

inline; check for others

Note that final modifiers can occur in either Java text or JML text. This allows a
specification to declare a Java variable as final, when appropriate, even if the Java
program text does not.

CHeck the table; add section references; add where allowed; indicate which are type
modifiers; turn headings 90 degrees.

155

APPENDIX A. SUMMARY OF MODIFIERS 156

JML Keyword Java annotation cl
as
s

in
te
rf
ac
e

m
et
ho

d

fie
ld

va
ri
ab
le

code Code X
code_bigint_math CodeBigintMath X X X
code_java_math CodeJavaMath X X X
code_safe_math CodeSafeMath X X X
extract Extract
ghost Ghost X X
helper Helper X
instance Instance
model Model
monitored Monitored
non_null NonNull X X X
non_null_by_default NonNullByDefault X X X
nullable Nullable X X X
nullable_by_default NullableByDefault X X X
peer Peer
pure Pure X X X
query Query
readonly Readonly
rep Rep
secret Secret
spec_bigint_math SpecBigintMath X X X
spec_java_math SpecJavaMath X X X
spec_protected SpecProtected
spec_public SpecPublic
spec_safe_math SpecSafeMath X X X
static Static
uninitialized Uninitialized

Table A.1: Summary of JML modifiers. All Java annotations are in the
org.jmlspecs.annotation package.

APPENDIX A. SUMMARY OF MODIFIERS 157

Grammatical construct Java modifiers JML modifiers

All modifiers public protected

private abstract

static final

synchronized transient

volatile native

strictfp

spec_public

spec_protected

model ghost pure

instance helper

non_null nullable

nullable_by_default

monitored

uninitialized final

Class declaration public final abstract

strictfp

pure model

nullable_by_default

spec_public

spec_protected

Interface declaration public strictfp pure model

nullable_by_default

spec_public

spec_protected

Nested Class declaration public protected

private static final

abstract strictfp

spec_public

spec_protected model

pure

Nested interface declara-
tion

public protected

private static

strictfp

spec_public

spec_protected model

pure

Local Class (and local
model class) declaration

final abstract

strictfp

pure model

APPENDIX A. SUMMARY OF MODIFIERS 158

Grammatical construct Java modifiers JML modifiers

Type specification (e.g.
invariant)

public protected

private static

instance

Field declaration public protected

private final volatile

transient static

spec_public

spec_protected

non_null nullable

instance monitored

final

Ghost Field declaration public protected

private static final

non_null nullable

instance monitored

Model Field declaration public protected

private static

non_null nullable

instance

Method declaration in a
class

public protected

private abstract final

static synchronized

native strictfp final

spec_public

spec_protected pure

non_null nullable

helper extract

Method declaration in an
interface

public abstract spec_public

spec_protected pure

non_null nullable

helper

Constructor declaration public protected

private

spec_public

spec_protected helper

pure extract

Model method (in a class
or interface)

public protected

private abstract

static final

synchronized strictfp

pure non_null nullable

helper extract

Model constructor public protected

private

pure helper extract

Java initialization block static -

JML initializer and
static_initializer

annotation

- -

Formal parameter final non_null nullable

Local variable and local
ghost variable declara-
tion

final ghost non_null

nullable uninitialized

Appendix B

Deprecated and Replaced
Syntax

A. Deprecated and Replaced Syntax

The subsections below briefly describe the deprecated and replaced features of JML. A
feature is deprecated if it is supported in the current release, but slated to be removed
from a subsequent release. Such features should not be used.

A feature that was formerly deprecated is replaced if it has been removed from JML in
favor of some other feature or features. While we do not describe all replaced syntax
in this appendix, we do mention a few of the more interesting or important features
that were replaced, especially those discussed in earlier papers on JML.

B.1 Deprecated Syntax
The following syntax is deprecated. Note that it might be supported with a depreca-
tion warning by some tools (e.g., JML2) but not by newer tools.

B.1.1 Deprecated Annotation Markers
The following lexical syntax for annotation markers is deprecated.

<annotation-marker> ::=
//+@ [@] ...

| /*+@ [@] ...
| //-@ [@] ...
| /*-@ [@] ...

159

APPENDIX B. DEPRECATED AND REPLACED SYNTAX 160

B.1.2 Deprecated Represents Clause Syntax
The following syntax for a functional represents-clause is deprecated.

<represents-clause><represents-clause>::= <represents-keyword><represents-keyword> <store-ref-expression><store-ref-expression> <- <spec-expression><spec-expression>
;

Instead of using the <-, one should use = in such a represents-clause. See section 8.4
Represents Clauses, for the supported syntax.

B.1.3 Deprecated monitors_for Clause Syntax
The following syntax for the monitors-for-clause is deprecated.

<monitors-for-clause><monitors-for-clause> ::= monitors_for <ident><ident> <- <spec-expression-list><spec-expression-list> ;

Instead of using the <-, one should use = in such a monitors-for-clause. See §11 for the
supported syntax.

B.1.4 Deprecated File Name Suffixes
The set of file name suffixes supported by JML tools is being simplified. In the future,
especially in new tools the suffixes The suffixes ‘.refines-java’, ‘.refines-spec’, ‘.refines-
jml’, ‘.spec’, ‘.java-refined’, ‘.spec-refined’, and ‘.jml-refined’ are no longer supported.
Instead, one should write specifications into files with the suffixes ‘.java’ and ‘.jml’.
See §11 for details on the use of file names with JML tools.

B.1.5 Deprecated weaklymodifier
The weakly modifier is not longer supported.

B.1.6 Deprecated refine Prefix
The following syntax involving the refine-prefix is deprecated.

<compilation-unit><compilation-unit> ::=
<package-declaration><package-declaration>?
<refine-prefix><refine-prefix>
<import-declaration><import-declaration>*
<top-level-declaration><top-level-declaration>*

<refine-prefix><refine-prefix> ::= <refine-keyword><refine-keyword> <string-literal><string-literal> ;

<refine-keyword><refine-keyword> ::= refine |refines

Instead of using the refine-prefix in a compilation unit, modern JML tools just use a
.jml file that contains any specifications not in the .java file. See §11 for details.

APPENDIX B. DEPRECATED AND REPLACED SYNTAX 161

B.1.7 Deprecated reverse-implication (<==) token
The <== token and the reverse-implication expression are deprecated. It was rarely
used and a bit confusing.

B.1.8 Deprecated \not_specified token
The \not_specified token used as an alternative to a predicate in many clauses is
deprecated.

B.1.9 Deprecatednowarn line annotation and\nowarn_op and
\warn_op functions

The nowarn annotation was used to suppress warnings on the line on which it oc-
curred. Similarly, \nowarn_op and \warn_op suppressed or unsuppressed warn-
ings within subexpressions. These were rarely used and created unsound implicit
assumptions.

B.1.10 Deprecated hence_by

The hence_by statement specification is deprecated. The same purpose is provided
by a assume statement. This deprecation is in line with avoiding having proof-
guiding information in JML, leaving that to tools.

B.1.11 Deprecated forallmethod specification clause
The forall method specification clause is deprecated. It had little to no use and no
compelling use cases. Any use one might make of it can be accomplished with an
old method specification declaration (§8.5.58.5.5) initialized with a \choose expression
(§12.17.212.17.2), as in

old T e = (\choose T e; true);

B.1.12 Deprecated constructor,method and field keywords
The constructor, method, and field keywords were intended to help with pars-
ing. However, they are not needed and, in fact, complicate parsing. Accordingly, they
have been deprecated.

B.1.13 Deprecated \lblpos and \lblneg
These two expressions were rarely used. In addition they are in the category of proof
debugging aids rather than program specification per se. Hence they are removed
from the language.

APPENDIX B. DEPRECATED AND REPLACED SYNTAX 162

B.1.14 Deprecated Java annotations for specifications
The only Java annotations used in JML are the JML modifiers (e.g. pure and @Pure.
Java annotations for clauses, such as @Requires, are removed from JML.

B.2 Replaced Syntax
The +-style of JML annotations, that is, JML annotations beginning with //+@ or
/*+@, has been replaced by the annotation-key feature described in §11.

As a note for readers of older papers, the keyword subclassing_contract was replaced
with code_contract, which is now removed. Instead, one should use a heavyweight
specification case with the keyword code just before the behavior keyword, and a
precondition of \same.

Similarly, the depends clause has been replaced by the mechanism of data groups
and the ‘in’ and ‘maps’ clauses of variable declarations.

Appendix C

Grammar Summary

Automatic collection of all of the grammar productions listed elsewhere in the docu-
ment

163

Appendix D

Type Checking Summary

This was in the DRM outline - is there something to be put in here? If it is to be col-
lected from the rest of the document, we need to place markers to identify the relevant
stuff.

164

Appendix E

Verification Logic
Summary

This was in the DRM outline. What was its intent? Is it the same as a section on semantics
and translation?

165

Appendix F

Differences in JML among
tools

Some material is in the DRM. Needs to be enhanced. SHould have a detailed comparison
with ACSL, for example – see the appendix of the ACSL documentation.

166

Appendix G

TODO

Be sure to talk about

• switch statements with strings

• switch expressions

• yield statements

• modules and specifications

• var declarations (type inference)

• Java 17 pattern matching switch statements

• pattern matching instanceof

• text blocks

• records

• sealed and hidden classes ?

• JEP 390: Warnings for Value-Based Classes

167

Appendix H

Statement translations

TODO: Need to insert both RAC and ESC in all of the following.

H.1 While loop
Java and JML statement:

//@ invariant invariant_condition ;
//@ decreases counter ;
while (condition) {

body
}

Translation: TODO: Needs variant condition, havoc information

{
//@ assert jmltranslate(invariant_condition) ;
//@ assert jmltranslate(variant_condition) > 0 ;
while (true) {

stats(tmp,condition)
if (!tmp) {

//@ assume !tmp;
break;

}
//@ assume tmp;
stats(body)

}
}

168

Appendix I

Java expression translations

I.1 Implicit or explicit arithmetic conversions
TODO

I.2 Arithmetic expressions
TODO: need arithmetic range assertions

In these, T is the type of the result of the operation. The two operands in binary
operations are already assumed to have been converted to a common type according
to Java’s rules.

stats(tmp, - a) ==>
stats(tmpa, a)
T tmp = - tmpa ;

stats(tmp, a + b) ==>
stats(tmpa, a)
stats(tmpb, b)
T tmp = tmpa + tmpb ;

stats(tmp, a - b) ==>
stats(tmpa, a)
stats(tmpb, b)
T tmp = tmpa - tmpb ;

stats(tmp, a * b) ==>
stats(tmpa, a)

169

APPENDIX I. JAVA EXPRESSION TRANSLATIONS 170

stats(tmpb, b)
T tmp = tmpa * tmpb ;

stats(tmp, a / b) ==>
stats(tmpa, a)
stats(tmpb, b)
//@ assert tmpb != 0; // No division by zero
T tmp = tmpa / tmpb ;

stats(tmp, a % b) ==>
stats(tmpa, a)
stats(tmpb, b)
//@ assert tmpb != 0; // No division by zero
T tmp = tmpa % tmpb ;

I.3 Bit-shift expressions
TODO

I.4 Relational expressions
No assertions are generated for the relational operations < > <= >= == !=. The
operands are presumed to have been converted to a common type according to Java’s
rules.

stats(tmp, a op b) ==>
stats(tmpa, a)
stats(tmpb, b)
T tmp = tmpa op tmpb ;

I.5 Logical expressions
stats(tmp, ! a) ==>

stats(tmpa, a)
T tmp = ! tmpa ;

The && and || operations are short-circuit operations in which the second operand
is conditionally evaluated. Here & and | are the (FOL) boolean non-short-circuit con-
junction and disjunction.

APPENDIX I. JAVA EXPRESSION TRANSLATIONS 171

stats(tmp, a && b) ==>
boolean tmp ;
stats(tmpa, a)
if (tmpa) {

//@ assume tmpa ;
stats(tmpb, b)
tmp = tmpa & tmpb ;

} else {
//@ assume ! tmpa ;
tmp = tmpa ;

}

stats(tmp, a || b) ==>
boolean tmp ;
stats(tmpa, a)
if (! tmpa) {

//@ assume ! tmpa ;
stats(tmpb, b)
tmp = tmpa | tmpb ;

} else {
//@ assume tmpa ;
tmp = tmpa ;

}

Bibliography

[1] https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.htmlhttps://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html.
3636, 4646

[2] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H.
Schmitt, and Mattias Ulbrich, editors. Deductive Software Verification – The KeY
Book, volume 10001 of Lecture Notes in Computer Science. Springer-Verlag, 2016.
22

[3] Krzystof R. Apt. Ten years of Hoare’s logic: A survey—part I. ACM Transactions
on Programming Languages and Systems, 3(4):431–483, October 1981. 1414

[4] R. J. R. Back. A calculus of refinements for programderivations. Acta Informatica,
25(6):593–624, August 1988. 99

[5] R. J. R. Back and J. von Wright. Refinement calculus, part I: Sequential nonde-
terministic programs. Technical Report Ser. A, No 92, Abo Akademi University,
Department of Computer Science, Lemminkäinengatan 14, 20520 Abo, Finland,
1989. Appears in Stepwise Refinement of Distributed Systems, Models, Formalisms,
Correctness, REX Workshop, Mook, The Netherlands, May/June 1989, Spring-
Verlag, LNCS 430, J. W. de Bakker, et al, (eds.), pages 42–66. 99

[6] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Graduate Texts in Computer Science. Springer-Verlag, Berlin, 1998.
99

[7] J. Barnes. High Integrity Ada: The SPARK Approach. Addison Wesley Longman,
Inc., Reading, 1997. 22

[8] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# program-
ming system: An overview. In Gilles Barthe, Lilian Burdy, Marieke Huisman,
Jean-Louis Lanet, and Traian Muntean, editors, Construction and Analysis of
Safe, Secure, and Interoperable Smart devices (CASSIS 2004), volume 3362 of Lec-
ture Notes in Computer Science, pages 49–69, New York, NY, 2005. Springer-
Verlag. 22

172

https://docs.oracle.com/javase/specs/jls/se17/html/jls-3.html

BIBLIOGRAPHY 173

[9] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB Standard: Ver-
sion 2.6. Technical report, Department of Computer Science, The University of
Iowa, 2017. Available at www.SMT-LIB.org. 5050

[10] Patrick Baudin, Pascal Cuoq, Jean-Christophe FilliÃ¢tre, Claude MarchÃ©,
Benjamin Monate, Yannick Moy, and Virgile Prevosto. ACLS: ANSI/ISO C Speci-
fication Language. CEA LIST and INRIA, Sacly, France, version 1.13 edition, 2018.
https://frama-c.com/download/acsl.pdfhttps://frama-c.com/download/acsl.pdf. 22

[11] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verification of Object-
Oriented Software: The KeY Approach, volume 4334 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, 2007. 88

[12] Alex Borgida, John Mylopoulos, and Raymond Reiter. On the frame problem in
procedure specifications. IEEE Transactions on Software Engineering, 21(10):785–
798, October 1995. 33

[13] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joeseph R. Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of JML tools
and applications. In Thomas Arts and Wan Fokkink, editors, Eighth Interna-
tional Workshop on Formal Methods for Industrial Critical Systems (FMICS 03),
volume 80 of Electronic Notes in Theoretical Computer Science (ENTCS), pages
73–89. Elsevier, June 2003. 66, 77, 88

[14] Patrice Chalin. JML support for primitive arbitrary precision numeric types:
Definition and semantics. Journal of Object Technology, 3(6):57–79, June 2004.
140140

[15] Yoonsik Cheon. A runtime assertion checker for the Java Modeling Language.
Technical Report 03-09, Department of Computer Science, Iowa State Univer-
sity, Ames, IA, April 2003. The author’s Ph.D. dissertation. 88

[16] Yoonsik Cheon and Gary T. Leavens. A runtime assertion checker for the Java
Modeling Language (JML). In Hamid R. Arabnia and Youngsong Mun, editors,
Proceedings of the International Conference on Software Engineering Research and
Practice (SERP ’02), Las Vegas, Nevada, USA, June 24-27, 2002, pages 322–328.
CSREA Press, June 2002. 88

[17] Yoonsik Cheon and Gary T. Leavens. A contextual interpretation of undefined-
ness for runtime assertion checking. In AADEBUG 2005, Proceedings of the Sixth
International Symposium on Automated and Analysis-Driven Debugging, Mon-
terey, California, September 19–21, 2005, pages 149–157, New York, NY, Septem-
ber 2005. ACM Press. 88

[18] Yoonsik Cheon, Gary T. Leavens, Murali Sitaraman, and Stephen Edwards.
Model variables: Cleanly supporting abstraction in design by contract.
Software—Practice & Experience, 35(6):583–599, May 2005. 33

[19] David Cok. OpenJML: JML for Java 7 by extending OpenJDK. In Mihaela Bo-
baru, Klaus Havelund, Gerard Holzmann, and Rajeev Joshi, editors, NASA For-

https://frama-c.com/download/acsl.pdf

BIBLIOGRAPHY 174

mal Methods, volume 6617 of Lecture Notes in Computer Science, pages 472–479.
Springer-Verlag, Berlin, 2011. 22, 88

[20] David R. Cok, 2018. http://www.openjml.orghttp://www.openjml.org. 88

[21] David R. Cok. JML and OpenJML for Java 16. In Proceedings of the 23rd ACM
International Workshop on Formal Techniques for Java-like Programs, FTfJP 2021,
page 65â€“67, New York, NY, USA, 2021. Association for Computing Machinery.
88

[22] David R. Cok and Joseph Kiniry. ESC/Java2: Uniting ESC/Java and JML. Tech-
nical report, University of Nijmegen, 2004. NIII Technical Report NIII-R0413.
22

[23] David R. Cok and Serdar Tasiran. Practical methods for reasoning about java
8’s functional programming features. In Ruzica Piskac and Philipp Rümmer, ed-
itors, Verified Software. Theories, Tools, and Experiments, pages 267–278, Cham,
2018. Springer International Publishing. 88

[24] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Inc., Englewood
Cliffs, N.J., 1976. 8686

[25] Michael Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dynam-
ically discovering likely program invariants to support program evolution. IEEE
Transactions on Software Engineering, 27(2):99–123, February 2001. 88

[26] John Fitzgerald and Peter Gorm Larsen. Modelling Systems: Practical Tools in
Software Development. Cambridge, Cambridge, UK, 1998. 1010

[27] John V. Guttag, James J. Horning, S. J. Garland, K. D. Jones, A. Modet, and J. M.
Wing. Larch: Languages and Tools for Formal Specification. Springer-Verlag, New
York, NY, 1993. 22, 77, 99, 1010

[28] John V. Guttag, James J. Horning, and Jeannette M. Wing. The Larch family of
specification languages. IEEE Software, 2(5):24–36, September 1985. 22

[29] Anthony Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19,
September 1990. 77

[30] I. Hayes, editor. Specification Case Studies. International Series in Computer
Science. Prentice-Hall, Inc., London, second edition, 1993. 33, 1010

[31] C. A. R. Hoare. An axiomatic basis for computer programming. Communications
of the ACM, 12(10):576–580,583, October 1969. 33, 99, 8686

[32] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4):271–281, 1972. 99

[33] Marieke Huisman. Reasoning about Java Programs in higher order logic with PVS
and Isabelle. Ipa dissertation series, 2001-03, University of Nijmegen, Holland,
February 2001. 77, 88

http://www.openjml.org

BIBLIOGRAPHY 175

[34] IEEE Standards Committee 754. IEEE Standard for binary floating-point arith-
metic, ANSI/IEEE Standard 754-1985. Institute of Electrical and Electronics En-
gineers, New York, 1985. Reprinted in ACM SIGPLAN Notices, 22(2):9-25, 1987.
5454

[35] Bart Jacobs and Eric Poll. A logic for the Java modeling language JML. In Funda-
mental Approaches to Software Engineering (FASE’2001), Genova, Italy, 2001, vol-
ume 2029 of Lecture Notes in Computer Science, pages 284–299. Springer-Verlag,
2001. 77

[36] Bart Jacobs, Joachim van den Berg, Marieke Huisman, Martijn van Berkum,
Ulrich Hensel, and Hendrik Tews. Reasoning about Java classes (preliminary
report). In OOPSLA ’98 Conference Proceedings, volume 33(10) of ACM SIGPLAN
Notices, pages 329–340. ACM, October 1998. 88

[37] Cliff B. Jones. Systematic software development using VDM. International Series
in Computer Science. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1986. 22

[38] Cliff B. Jones. Systematic Software Development Using VDM. International Series
in Computer Science. Prentice Hall, Englewood Cliffs, N.J., second edition, 1990.
99, 1010

[39] Joan Krone, William F. Ogden, and Murali Sitaraman. Modular verification of
performance constraints. Technical Report RSRG-03-04, Department of Com-
puter Science, Clemson University, Clemson, SC 29634-0974, May 2003. 8888, 8989

[40] Leslie Lamport. A simple approach to specifying concurrent systems. Commu-
nications of the ACM, 32(1):32–45, January 1989. 22

[41] Gary T. Leavens. An overview of Larch/C++: Behavioral specifications for C++
modules. In Haim Kilov andWilliam Harvey, editors, Specification of Behavioral
Semantics in Object-Oriented Information Modeling, chapter 8, pages 121–142.
Kluwer Academic Publishers, Boston, 1996. An extended version is TR #96-01d,
Department of Computer Science, Iowa State University, Ames, Iowa, 50011. 22

[42] Gary T. Leavens. Larch/C++ Reference Manual. Version 5.14. Available
in ftp://ftp.cs.iastate.edu/pub/larchc++/lcpp.ps.gzftp://ftp.cs.iastate.edu/pub/larchc++/lcpp.ps.gz
or on the World Wide Web at the URL
http://www.cs.iastate.edu/~leavens/larchc++.htmlhttp://www.cs.iastate.edu/~leavens/larchc++.html, Octo-
ber 1997. 22

[43] Gary T. Leavens. Larch frequently asked questions. Version 1.110. Available in
http://www.cs.iastate.edu/~leavens/larch-faq.htmlhttp://www.cs.iastate.edu/~leavens/larch-faq.html, May
2000. 99

[44] Gary T. Leavens and Albert L. Baker. Enhancing the pre- and postcondition tech-
nique for more expressive specifications. In Jeannette M. Wing, Jim Woodcock,
and Jim Davies, editors, FM’99 — Formal Methods: World Congress on Formal
Methods in the Development of Computing Systems, Toulouse, France, Septem-
ber 1999, Proceedings, volume 1709 of Lecture Notes in Computer Science, pages
1087–1106. Springer-Verlag, 1999. 22

ftp://ftp.cs.iastate.edu/pub/larchc++/lcpp.ps.gz
http://www.cs.iastate.edu/~leavens/larchc++.html
http://www.cs.iastate.edu/~leavens/larch-faq.html

BIBLIOGRAPHY 176

[45] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of JML:
A behavioral interface specification language for Java. ACM SIGSOFT Software
Engineering Notes, 31(3):1–38, March 2006. 77, 1111

[46] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David R.
Cok, Peter Müller, Joseph Kiniry, Patrice Chalin, and Daniel M. Zimmer-
man. JML Reference Manual. Available from http://www.jmlspecs.orghttp://www.jmlspecs.org,
September 2009. ii, 99, 1010

[47] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, California
Institute of Technology, 1995. Available as Technical Report Caltech-CS-TR-95-
03. 22

[48] K. RustanM. Leino. Data groups: Specifying the modification of extended state.
In OOPSLA ’98 Conference Proceedings, volume 33(10) of ACM SIGPLAN Notices,
pages 144–153, New York, NY, October 1998. ACM. 22

[49] K. Rustan M. Leino and Rosemary Monahan. Dafny meets the verification
benchmarks challenge. In Proceedings of the Third international conference on
Verified software: theories, tools, experiments, volume 6217 of Lecture Notes in
Computer Science, pages 112–126, Berlin, 2010. Springer-Verlag. 22

[50] K. Rustan M. Leino, Greg Nelson, and James B. Saxe. ESC/Java user’s manual.
Technical note, Compaq Systems Research Center, October 2000. 22, 7777

[51] Richard Allen Lerner. Specifying objects of concurrent systems. Ph.D. Thesis
CMU-CS-91-131, School of Computer Science, CarnegieMellon University, May
1991. 8787

[52] Barbara Liskov and John Guttag. Abstraction and Specification in Program De-
velopment. The MIT Press, Cambridge, Mass., 1986. 99

[53] BertrandMeyer. Applying ‘design by contract’. Computer, 25(10):40–51, October
1992. 33, 99, 1010

[54] Bertrand Meyer. Eiffel: The Language. Object-Oriented Series. Prentice Hall,
New York, NY, 1992. 22, 99, 1010

[55] BertrandMeyer. Object-oriented Software Construction. Prentice Hall, New York,
NY, second edition, 1997. 22, 99, 1010

[56] Carroll Morgan. Programming from Specifications: Second Edition. Prentice Hall
International, Hempstead, UK, 1994. 99

[57] Carroll Morgan and Trevor Vickers, editors. On the refinement calculus. Formal
approaches of computing and information technology series. Springer-Verlag,
New York, NY, 1994. 99

[58] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular specifica-
tion of frame properties in JML. Concurrency and Computation: Practice and
Experience, 15(2):117–154, February 2003. 7272

http://www.jmlspecs.org

BIBLIOGRAPHY 177

[59] International Standards Organization. Information technology – programming
languages, their environments and system software interfaces – Vienna Devel-
opment Method – specification language – part 1: Base language. ISO/IEC
13817-1, December 1996. 1010

[60] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, December 1972. 99

[61] Henrique Rebêlo, Gary T. Leavens, Mehdi Bagherzadeh, Hridesh Rajan, Ricardo
Lima, Daniel M. Zimmerman, Márcio Cornélio, and Thomas Thüm. Modulariz-
ing crosscutting contracts with aspectjml. In Proceedings of the 13th International
Conference on Modularity, MODULARITY ’14, pages 21–24, New York, NY, USA,
2014. ACM. 88

[62] Henrique Rebêlo, Gary T. Leavens, and Ricardo Massa Lima. Client-aware
checking and information hiding in interface specifications with JML/Ajmlc. In
Proceedings of the 2013 Companion Publication for Conference on Systems, Pro-
gramming, & Applications: Software for Humanity, SPLASH ’13, pages 11–12,
New York, NY, USA, 2013. ACM. 88

[63] Henrique Rebêlo, Ricardo Lima, Márcio Cornélio, Gary T. Leavens, Alexandre
Mota, and César Oliveira. Optimizing jml feature compilation in ajmlc using
aspect-oriented refactorings. In XIII Brazilian Symposium on Programming Lan-
guages (SBLP), pages 117–130. Brazilian Computer Society, August 2009. 88

[64] Edwin Rodríguez, Matthew B. Dwyer, Cormac Flanagan, John Hatcliff, Gary T.
Leavens, and Robby. Extending JML for modular specification and verification
of multi-threaded programs. In Andrew P. Black, editor, ECOOP 2005 — Object-
Oriented Programming 19th European Conference, Glasgow, UK, volume 3586 of
Lecture Notes in Computer Science, pages 551–576. Springer-Verlag, Berlin, July
2005. 66, 7777, 8787

[65] David S. Rosenblum. A practical approach to programmingwith assertions. IEEE
Transactions on Software Engineering, 21(1):19–31, January 1995. 22

[66] Clyde Ruby and Gary T. Leavens. Safely creating correct subclasses without
seeing superclass code. In OOPSLA 2000 Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, Minneapolis, Minnesota, vol-
ume 35(10) of ACM SIGPLAN Notices, pages 208–228, New York, NY, October
2000. ACM. 77

[67] Clyde Dwain Ruby. Modular subclass verification: safely creating correct sub-
classes without superclass code. Technical Report 06-34, Iowa State University,
Department of Computer Science, December 2006. 77

[68] J. Michael Spivey. The Z Notation: A Reference Manual. International Series in
Computer Science. Prentice-Hall, New York, NY, second edition, 1992. 33, 1010

[69] Alan Wills. Specification in Fresco. In Susan Stepney, Rosalind Barden, and
David Cooper, editors, Object Orientation in Z, Workshops in Computing, chap-
ter 11, pages 127–135. Springer-Verlag, Cambridge CB2 1LQ, UK, 1992. 33

BIBLIOGRAPHY 178

[70] JeannetteM.Wing. Writing Larch interface language specifications. ACMTrans-
actions on Programming Languages and Systems, 9(1):1–24, January 1987. 99

[71] Jeannette M. Wing. A specifier’s introduction to formal methods. Computer,
23(9):8–24, September 1990. 22, 99

Index

<jml-identifier>, 4040
private, 88
public, 88
spec_protected, 33
spec_public, 33

old, 1010
byte, 5353
char, 5353
int, 5353
long, 5353
short, 5353
(*...*), 129129
<:, 121121
JML.informal(), 129129
<#=, 121121
<#, 121121
.jml files, 149149
accessible clause, 8686
assignable clause, 8585
boolean type, 5252
breaks clause, 9090
callable clause, 8989
captures clause, 8989
choose_if clause, 9090
choose clause, 9090
code modifier, 8181
continues clause, 9090
diverges clause, 8686
duration clause, 8888
extract clause, 9090
ghost, 9494
instance, 9595
in, 9696
maps, 9696
measured_by clause, 8787
model_program clause, 9090

model, 9494
monitored, 9595
old clause, 8888
or clause, 9090
peer, 9595
pure, 9090
query, 9191, 9595
readonly, 9595
rep, 9595
returns clause, 9090
secret, 9191, 9595
signals_only clause, 8585
signals clause, 8585
uninitialized, 9494
when clause, 8787
working_space clause, 8888
@Ghost, 9494
@Instance, 9595
@Model, 9494
@Monitored, 9595
@Peer, 9595
@Query, 9595
@Readonly, 9595
@Rep, 9595
@Secret, 9595
@Uninitialized, 9494
\TYPE, 5555
\bigint, 5353
\locset, 5656
\real, 5555
assert statement, 106106
assume statement, 106106
code_bigint_math, 9191
code_java_math, 9191
code_safe_math, 9191
double, 5454
ensures, 8484

179

INDEX 180

extract, 9292
float, 5454
forall, 161161
function, 9191
helper, 9191
model, 9090
non_null, 9090
nowarn, 161161
nullable, 9090
requires, 8484
skip_esc, 9191
skip_rac, 9191
spec_bigint_math, 9191
spec_java_math, 9191
spec_protected, 9191
spec_public, 9191
spec_safe_math, 9191
unreachable statement, 109109
@Options, 9191
\choose, 127127
\count, 123123
\duration, 136136
\elemtype, 131131
\exception, 122122
\exists, 127127
\forall, 127127
\fresh, 125125
\index, 123123
\invariant_for, 132132
\is_initialized, 131131
\lblneg, 161161
\lblpos, 161161
\lockset, 135135
\max, 128128, 135135
\min, 128128
\nonnullelements, 128128
\not_assigned, 133133
\not_modified, 133133
\nowarn_op, 161161
\old, 123123, 124124
\one_of, 128128
\only_accessed, 134134
\only_assigned, 134134
\only_called, 134134
\only_captured, 134134
\past, 123123, 125125

\pre, 123123, 125125
\product, 128128
\reach, 135135
\result, 122122
\space, 137137
\static_invariant_for, 132132
\string, 6262
\sum, 128128
\typeof, 130130
\type, 130130
\warn_op, 161161
\working_space, 136136
\bigint, 140140
\real, 140140

abstract data type, 33, 99
abstract fields, 33
abstract state, 33
abstract value, 99
abstract value, of an ADT, 33
ADT, 33
Arithmetic modes, 140140
axiom, 7676

Baker, 77
behavior, 22, 8080
behavior, sequential, 66
behavioral interface specification, 22
behavioral interface specification language,

22
benefits, of JML, 66
block contract, 113113
block specification, 113113
Burdy, 66–88

Cheon, 33, 88
code_bigint_math, 141141
code_java_math, 141141
code_safe_math, 141141
concurrency, lack of support in JML, 66
conditional JML annotation comments, 3939
constraint clause, 7070
contract, in specification, 33

Daikon, 88
data groups, 9393

INDEX 181

datatype, 99
Default specifications, 9797
design, documentation of, 77
design-by-contract, 33
divergence condition, 33
documentation, of design decisions, 77

Eiffel, 22
Ernst, 88
ESC/Java, 88
exceptional postcondition, 33

field specifications, 9393
Fitzgerald, 99
formal documentation, 77
formal specification, reasons for using, 77
frame axiom, 22
frame condition, 33
frame conditions, 1616
Fresco, 33

ghost fields, 7070
goals, of JML, 77
Guttag, 22, 77, 99

Hall, 77
Handbook, for LSL, 99
Hayes, 33, 99
Hoare, 99, 1010
Hoare triple, 33
Horning, 22, 77, 99
Huisman, 77, 88

informal expression, 129129
initializer, 7575
initially clause, 7070
interface, 22
interface specification, 22
interface, field, 22
interface, method, 22
interface, type, 22
invariant clause, 6969
ISO, 99

Jacobs, 77, 88
java.math.BigInteger, 141141
JML annotation comments, 3737

JML annotation text, 3737, 4040
JML block annotation comments, 3939
JML line annotation comments, 3939
jmlc, 88
jmldoc, 88
Jones, 99

Lamport, 22
Larch, 22
Larch Shared Language (LSL), 22
Larch style specification language, 22
Larch/C++, 1010
Larsen, 99
Leavens, 22, 77, 88
Leino, 22, 88
Liskov, 99
location sets, 1616
locations, 1515
Lock ordering, 121121
LOOP, 88
Loop specifications, 110110
LSL, 22
LSL Handbook, 99

memory locations, 1515
method, behavior of, 22
methodology, and JML, 77
Meyer, 22, 33, 99, 1010
model classes, 6767, 7272
model fields, 7171
model import statement, 6565
model interfaces, 6767
model methods, 7272
model-oriented specification, 22
modifiers, 1717
monitors_for clause, 7777

Nelson, 22
non_null, 1818, 9393
non_null_by_default, 6969
nonnull_by_default, 1919
normal clause order, 8181
normal postcondition, 33
notation, and methodology, 77
nullable, 1818, 9393
nullable_by_default, 1919, 6969

INDEX 182

operation, 99
operator, of LSL, 99

package-info.java, 6565
Parnas, 99
parsing, 88
peer, 9494
plain Java comments, 3737
Poll, 77
post-state, 1515
post-states, 33
postcondition, 22, 99
postcondition, exceptional, 22
postcondition, normal, 22
pre-state, 1515
pre-states, 33
precondition, 22, 33, 99
program state, 1515
programmingmethod, and JML, 77
pure, 6969

readable if clause, 7676
reasons, for formal documentation, 77
represents clause, 7171
Rosenblum, 22
Ruby, 77

Saxe, 22
sequential behavior, 66
set statement, 110110
SkipRac, 9191
spec_bigint_math, 141141
spec_java_math, 141141
spec_protected, 9393
spec_public, 9393
spec_safe_math, 141141
specification case, 8080
specification inference, 9797
Specification inheritance, 1616
specification of fields, 9393
specification, of interface behavior, 22
Spivey, 33, 99
statement specification, 113113
static_initializer, 7272
storeref expressions, 1616

threads, specification of, 66

tool support, 88
trait, 99
trait function, 99
type checking, 88
type, abstract, 99

unconditional JML annotation comments,
3838

usefulness, of JML, 66
uses, of JML, 77
utility, of JML, 66

value, abstract, 99
VDM, 99, 1010
VDM-SL, 99
visibility, 88
vocabulary, 22

Wills, 33
Wing, 22
writable if clause, 7676

Z, 33, 99

	Introduction
	Behavioral Interface Specifications
	A First Example
	What is JML Good For?
	Purpose of this document
	Previous JML Reference Manual
	Historical Precedents and Antecedents
	Acknowledgments

	Structure of this Manual
	Organization
	Typographical conventions
	Grammar

	JML concepts
	JML and Java compilation units
	Program state and memory locations
	Specification inheritance
	JML modifiers and Java annotations
	Modifiers
	Type modifiers

	Possibly null and non-null type annotations
	Syntax
	Defaults
	Java and JML language features with type annotations
	Generic types and type annotations
	Interplay with other non-null annotations

	Visibility
	Model and Ghost
	Static and Instance
	Determinism of method calls
	Observable purity
	Location sets and Dynamic Frames
	Arithmetic modes
	Race condition detection
	Redundant specifications
	Naming of JML constructs
	Specification inference
	org.jmlspecs.lang package
	Evaluation and well-formedness of JML expressions
	Core JML

	JML Syntax
	Textual form of JML specifications
	Java lexical structure
	JML annotations within Java source
	JML annotations
	Unconditional JML annotations
	Conditional JML annotation comments
	Default keys
	Tokenizing JML annotations
	Embedded comments in JML annotations
	Compound JML annotation token sequences

	Locations of JML annotations
	JML identifiers and keywords vs. Java reserved words
	JML Lexical Grammar
	Definitions of common grammar symbols

	JML Types
	Java reference types
	Java enums
	Java records
	Java Streams

	[.5]boolean type
	Java integer and character types
	[.5]`bigint
	Java double and float types
	[.5]`real
	[.5]`TYPE
	[.5]`locset
	Mathematical sets: [.5]`set<T>
	Mathematical sequences: [.5]`seq<T>
	String and `string
	Mathematical maps: [.5]`map<T,U>

	JML Specifications for Packages and Compilation Units
	Model import statements
	Default imports
	Issues with model import statements
	Model classes and interfaces

	Specifications for Java types in JML
	Modifiers for type declarations
	non_null_by_default, nullable_by_default, @NonNullByDefault, @NullableByDefault
	pure and @Pure
	@Options

	invariant clause
	constraint clause
	initially clause
	ghost fields
	model fields
	represents clause
	model methods and model classes
	static_initializer
	Simple static initialization
	Static initializers and static invariants
	Default static initialization
	Multi-class initialization

	(instance) initializer
	axiom
	readable if clause and writable if clause
	monitors_for clause

	JML Method specifications
	Structure of JML method specifications
	Behaviors
	Nested specification clauses
	Ordering of clauses
	Specification inheritance and the [.5]code modifier
	Visibility
	Grammar of method specifications

	Method specifications as Annotations
	Modifiers for methods
	Common JML method specification clauses
	requires clause
	ensures clause
	[.5]assignable clause
	[.5]signals clause
	[.5]signals_only clause

	Advanced JML method specification clauses
	[.5]accessible clause
	[.5]diverges clause
	[.5]measured_by clause
	[.5]when clause
	[.5]old clause
	[.5]duration clause
	[.5]working_space clause
	[.5]callable clause
	[.5]captures clause

	Model Programs ([.5]model_program clause)
	Structure and purpose of model programs
	[.5]extract clause
	[.5]choose clause
	[.5]choose_if clause
	[.5]or clause
	[.5]returns clause
	[.5]continues clause
	[.5]breaks clause

	Modifiers for method specifications
	[.5]pure and @Pure
	non_null, nullable, @NonNull, and @Nullable
	model and @Model
	spec_public, spec_protected, @SpecPublic, and @SpecProtected
	helper and @Helper
	function and @Function
	[.5]query, [.5]secret, @Query, and @Secret
	code_java_math, spec_java_math, code_bigint_math, spec_bigint_math, code_safe_math, spec_safe_math, @CodeJavaMath, @CodeSafeMath, @CodeBigintMath, @SpecJavaMath, @SpecSafeMath, @SpecBigintMath
	skip_esc, skip_rac, @SkipEsc, and SkipRac
	Options
	extract and @Extract

	TODO Somewhere

	Field Specifications
	Field and Variable Modifiers
	non_null and nullable (@NonNull, @Nullable)
	spec_public and spec_protected (@SpecPublic, @SpecProtected)
	[.5]ghost and [.5]Ghost
	[.5]model and [.5]Model
	[.5]uninitialized and [.5]Uninitialized
	[.5]instance and [.5]Instance
	[.5]monitored and [.5]Monitored
	[.5]query, [.5]secret and [.5]Query, [.5]Secret
	[.5]peer, [.5]rep, [.5]readonly ([.5]Peer, [.5]Rep, [.5]Readonly)

	Ghost fields
	Model fields
	Datagroups: [.5]in and [.5]maps clauses
	[.5]maps clause

	Default specifications and specification inference
	Class specifications
	Static initialization
	Instance initialization

	Field specifications
	Non-overridden methods
	Overriding methods
	Library methods
	Object()
	Constructors
	Default constructors
	Specification in .jml file
	Specification in .java file
	Default specification

	Enums
	Records
	Lambda functions
	Loops

	JML Statements
	assert statement and Java assert statement
	assume statement
	Local ghost variable declarations
	Local model class declarations
	Ghost statement label
	Built-in state labels
	unreachable statement
	set statement
	Loop specifications
	Loop invariants
	Loop variants
	Loop frame conditions
	Inferring loop specifications

	Statement (block) specification
	begin-end statement groups

	JML Expressions
	Syntax
	Purity (no side-effects)
	Java operations used in JML
	Precedence of infix operations
	Well-defined expressions
	Chaining of comparison operators
	org.jmlspecs.lang.JML
	Implies operator: [.5]==>
	Equivalence and inequivalence: [.5]<==> <=!=>
	JML subtype: <:
	Lock ordering:
	`result
	`exception
	`count (`index)
	`old, `pre, and `past
	`old
	`pre
	`past

	`fresh
	Quantified expressions
	`forall, `exists
	`choose
	`one_of, `sum, `product, `max, `min

	`nonnullelements
	informal expression: (*...*) and JML.informal()
	`type
	`typeof
	`elemtype
	`is_initialized
	`invariant_for
	`static_invariant_for
	`not_modified
	`not_assigned
	`only_assigned, `only_accessed, `only_captured
	`only_called
	`lockset and `max
	`reach
	Set comprehension
	`duration
	`working_space
	`space
	Store-ref expressions

	Arithmetic modes
	Integer arithmetic
	Integer arithmetic modes
	Semantics of Java math mode
	Semantics of Safe math mode
	Semantics of Bigint math mode
	Arithmetic modes and Java code

	Real arithmetic modes
	fp_strict mode
	fp_real mode

	Specification and verification of lambda functions
	Universe types
	Model Programs
	Specification [.5].jml files
	Locating .jml files
	Rules applying to declarations in .jml files
	Combining Java and JML files
	Specifications in method bodies
	Obsolete syntax

	Interaction with other tools
	Interaction with the Checker framework

	Summary of Modifiers
	Deprecated and Replaced Syntax
	Deprecated Syntax
	Deprecated Annotation Markers
	Deprecated Represents Clause Syntax
	Deprecated monitors_for Clause Syntax
	Deprecated File Name Suffixes
	Deprecated [.5]weakly modifier
	Deprecated refine Prefix
	Deprecated reverse-implication (<==) token
	Deprecated `not_specified token
	Deprecated nowarn line annotation and '134nowarn_op and '134warn_op functions
	Deprecated [.5]hence_by
	Deprecated forall method specification clause
	Deprecated constructor, method and field keywords
	Deprecated `lblpos and `lblneg
	Deprecated Java annotations for specifications

	Replaced Syntax

	Grammar Summary
	Type Checking Summary
	Verification Logic Summary
	Differences in JML among tools
	TODO
	Statement translations
	While loop

	Java expression translations
	Implicit or explicit arithmetic conversions
	Arithmetic expressions
	Bit-shift expressions
	Relational expressions
	Logical expressions

